

GCE

Chemistry A

H432/02: Synthesis and analytical techniques

Advanced GCE

Mark Scheme for June 2019

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

© OCR 2019

Annotations available in RM Assessor

Annotation	Meaning
✓	Correct response
X	Incorrect response
^	Omission mark
BOD	Benefit of doubt given
CON	Contradiction
RE	Rounding error
SF	Error in number of significant figures
ECF	Error carried forward
L1	Level 1
L2	Level 2
L3	Level 3
NBOD	Benefit of doubt not given
SEEN	Noted but no credit given
I	Ignore

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
_	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

Subject-specific Marking Instructions

INTRODUCTION

Your first task as an Examiner is to become thoroughly familiar with the material on which the examination depends. This material includes:

- the specification, especially the assessment objectives
- the question paper
- the mark scheme.

You should ensure that you have copies of these materials.

You should ensure also that you are familiar with the administrative procedures related to the marking process. These are set out in the OCR booklet **Instructions for Examiners**. If you are examining for the first time, please read carefully **Appendix 5 Introduction to Script Marking: Notes for New Examiners**.

Please ask for help or guidance whenever you need it. Your first point of contact is your Team Leader.

SECTION A

Question	Answer	Marks	AO element	Guidance
1	Α	1	AO1.2	
2	D	1	AO2.1	
3	С	1	AO1.2	
4	С	1	AO1.2	ALLOW E (This is the correct term)
5	D	1	AO2.5	
6	Α	1	AO2.5	
7	В	1	AO1.2	ALLOW 6 (This is the number of chiral centres)
8	С	1	AO1.2	
9	Α	1	AO2.5	
10	В	1	AO2.5	
11	Α	1	AO2.4	
12	С	1	AO2.5	
13	С	1	AO1.2	
14	Α	1	AO1.1	
15	В	1	AO1.2	
	Total	15		

SECTION B

C	Questi	on	Answer	Marks	AO element	Guidance
16	(a)	(i)	H ₃ C H ₃ C H ₃ C H CHO H Curly arrow from C=C bond to H of H–Br ✓ DO NOT ALLOW partial charge on C=C Correct dipole shown on H–Br AND curly arrow showing breaking of H–Br bond ✓	4	AO1.2	NOTE: curly arrows can be straight, snake-like, etc. but NOT double headed or half headed arrows 1st curly arrow must • go to the H atom of H–Br AND • start from, OR be traced back to any point across width of C=C 2nd curly arrow must • start from, OR be traced back to any part of *H–Br* bond AND • go to Br*- ###################################

Question	Answer	Marks	AO element	Guidance
	Correct carbocation AND curly arrow from Br⁻ to C⁺ of carbocation ✓ DO NOT ALLOW δ+ on C of carbocation		AO2.5	IGNORE connectivity of CHO and CH₃ groups in carbocation and product e.g. ALLOW CHO CHO OR
	H ₃ C $\stackrel{C}{\leftarrow}$		AO2.5	ALLOW COH for CHO (reaction does not involve this group) 3rd curly arrow must • go to the C+ of carbocation AND • start from, OR be traced back to any point across width of lone pair on :Br • OR start from – charge of Br ion (Lone pair NOT needed if curly arrow shown from – charge of Br ion) IF Br ₂ is used instead of HBr contact your Team Leader
(a) (ii)	(major product forms from) most/more stable	2		For carbocation,

Question	Answer	Marks	AO element	Guidance
	intermediate/carbocation ✓ (major product forms from a) tertiary carbocation OR carbocation bonded to more C atoms / more alkyl groups OR carbocation bonded to no H atoms ✓		AO1.1	IGNORE descriptions of the major/minor product in terms of Markownikoff's rule e.g. H atom joins to C with most H IGNORE references to stability of the product
				ALLOW ORA, i.e. (minor product forms from) least/less stable intermediate/carbocation ✓ (minor product forms from a) secondary carbocation OR carbocation bonded to fewer C atoms / more alkyl groups OR carbocation bonded to H atoms ✓
(b) (i) Tollens' (reagent) ✓	2	AO1.2	ALLOW ammoniacal silver nitrate OR Ag ⁺ /NH ₃

Q	uesti	on	Answer	Marks	AO element	Guidance
			Silver (mirror/precipitate/ppt/solid) with citronellal/the aldehyde ✓		×2	ALLOW black ppt OR grey ppt IGNORE references to acidified dichromate reacting with both compounds
	(b)	(ii)	C ₁₀ H ₁₈ O ✓	1	AO1.2	DO NOT ALLOW C ₁₀ H ₁₇ OH
	(b)	(iii)	Same molecular formula AND Different structural formulae ✓ OR Both (geraniol and citronellal) have the molecular formula C ₁₀ H ₁₈ O AND Different structural formulae ✓	1	AO1.1	Same formula is not sufficient (no reference to molecular) Different arrangement of atoms is not sufficient (no reference to structure/structural) For structural formulae, ALLOW structure/displayed/skeletal formulae/ functional groups DO NOT ALLOW any reference to spatial/space ALLOW ECF from incorrect molecular formula in (b)(ii)
		(iv)	Same structural formula	1	AO1.1	ALLOW structure/displayed/skeletal formula

Question	Answer	Marks	AO element	Guidance
	AND Different arrangement (of atoms) in space OR different spatial arrangement (of atoms) ✓			DO NOT ALLOW same empirical formula OR same general formula IGNORE same molecular formula Reference to E/Z isomerism or optical isomerism is not sufficient
(v)	Geraniol: (Carbon-carbon) double bond at carbon-2(,3) AND E OR Z ✓ Structure of Z geraniol (E isomer is shown in question) OH ✓	4	AO1.2	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC CHECK diagrams of citronellal and geraniol for annotations that may be worthy of credit DO NOT ALLOW isomerism at C=C at carbon 6(,-7) ALLOW identification of carbon-2(,3) from correct Z geraniol isomer if not stated in text or diagram IGNORE cis OR trans isomerism (none of the substituent groups attached to the C=C are the same) IGNORE geometric ALLOW type of isomerism from E/Z labels, even if incorrectly assigned In geraniol, ALLOW C ₆ H ₁₁ OR R to represent alkenyl chain ALLOW CH ₃ O to represent CH ₂ OH

Question	Answer	Marks	AO element	Guidance
	Citronellal: chiral/asymmetric C at carbon-3 OR carbon-3 is bonded to 4 different groups AND optical isomerism ✓		AO1.2	ALLOW identification of carbon-3 from 3D structure citronellal if not stated in text or diagram
	Two 3D structures of citronellal that are mirror images ✓ e.g.		AO2.5	IGNORE connectivity of groups around chiral C In citronellal, ALLOW C ₆ H ₁₁ OR R to represent alkenyl chain ALLOW C ₂ H ₃ O to represent CH ₂ CHO IF structural formula of alkenyl chain is used IGNORE one small slip in one/both isomers e.g.(CH ₃) ₂ CHCH ₂ CH ₂ (missing carbon-7) ALLOW two 3D structures with 2 groups swapped e.g.
	Total	13		П

Question	Answer	Marks	AO element	Guidance
17 (a) (i)	$\begin{array}{c} H \\ H_2N \\ \hline \\ H_2N \\ \hline \\ CH_2 \\ OH \\ \end{array} \begin{array}{c} H \\ CH_3 \\ CH_3 \\ CONH \\ \hline \\ CH_3CONH \\$	4	AO2.5 ×4	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous ALLOW protonation of NH ₂ group in reaction with (CH ₃) ₂ CHOH i.e. H ₃ N CH ₂ CH ₃ ALL structures must be based on serine For reaction with excess CH ₃ COCI, IGNORE reaction of COOH to form an acid anhydride

Question	Answer	Marks	AO element	Guidance
				CH ₃ CONH—C—C—COH CH ₂ COO (both NH and OH groups reacted but H missing from α C atom)
				OR
				CH ₃ CONH——C——C——C——CH ₂ —OH
				ÖH (NH group reacted correctly but rest of serine unchanged)
				OR NH ₂ —C—C CH ₂ OH
				CH ₃ COO (OH group reacted correctly but rest of serine unchanged)
(ii)	IF M_r (amino acid) = 131 from titration analysis AWARD	4		

Question	Answer	Marks	AO element	Guidance
	first 3 marks ALLOW 3SF or more throughout IGNORE trailing zeroes, e.g. ALLOW 0.044 for 0.0440			ALLOW alternative approaches
	$n(HCI)$ = 0.150 × $\frac{25.0}{1000}$ OR 3.75 × 10 ⁻³ (mol) \checkmark		AO2.8	
	<i>n</i> (amino acid) in 250 cm ³ = $3.75 \times 10^{-3} \times \frac{250.0}{21.30}$ OR 0.0440 (mol) ✓		AO2.8	Calculator: 0.04401408451 ALLOW ECF from incorrect <i>n</i> (HCI)
	$M(\text{amino acid}) = \frac{5.766}{0.0440} = 131 \text{ (g mol}^{-1}) \checkmark$		AO2.8	ALLOW ECF from incorrect n(amino acid)
	Amino acid = $(CH_3)_2CHCH_2CH(NH_2)COOH/leucine$ AND working to show R = 57 to justify choice OR evidence to show M_r leucine = 131 to justify choice \checkmark		AO3.2	ALLOW ECF from incorrect <i>M</i> (amino acid) i.e. ECF for alkyl group closest to calculated <i>M</i> (alkyl group), e.g. for <i>M</i> (alkyl group) = 15, ALLOW CH ₃ CH(NH ₂)COOH Note: evidence may be shown with table
(b) (i)	R _f value in range 0.33 – 0.35 ✓	1	AO1.1	ALLOW 2 SF or more. But ignore digits after second sig fig ALLOW 0.3 for 0.33
(ii)	gly(cine) ✓ Amino acid matches (leu(cine) and) glycine in Solvent W AND Amino acid matches (ala(nine) and) glycine in Solvent X ✓	2	AO2.3 ×2	ALLOW glycine has the same/similar R_f as the unknown in both solvents/chromatograms ALLOW suitable alternatives for R_f e.g. moves same distance
	Total	11		

C	uesti	on	Answer	Marks	AO element	Guidance
18	(a)	(i)	ethyl 3-bromopropanoate ✓	1	AO1.2	ALLOW one word: ethyl3-bromopropanoate OR more words, e.g. ethyl 3-bromo propanoate IGNORE lack of hyphens, or addition of commas
		(ii)	Br OH + HO HO Sester A	5	AO2.5 ×5	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous ALLOW in either order ALLOW any vertical bond to the OH group e.g. ALLOW OR OH HO DO NOT ALLOW OH—
			OHT(aq) HO OHT(aq)			ALLOW in either order For reaction with OH ⁻ , ALLOW one mark for OR HO OH OH

Question		Ans	wer	Marks	AO element	Guidance
(iii)	hydrolysis ✓			1	AO1.1	IGNORE 'acid' and 'alkaline" IGNORE nucleophilic substitution
(b)	Proton environment 1 2 3 4 Mark by column Chemical shift Splitting patter	: all 4 correct 3 correct ✓	ect √√	4	AO3.1 × 4	ALLOW δ values ± 0.2 ppm, as a range or a value within the range ALLOW integers for δ values e.g. 2 is equivalent to 2.0 ALLOW quadruplet for quartet ALLOW diagrams to show splitting pattern e.g. for triplet ALLOW splitting patterns shown as numbers i.e. '3' for triplet, '4' for quartet

Question	Answer	Marks	AO element	Guidance
(c)	OR OR OH OR OH OR OH OR	1	AO3.1	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous
(d)	IF answer on answer line = 24018, AWARD 2 marks IF answer on answer line = 27600, AWARD 1 mark Relative mass of 200 molecules = $200 \times 138 = 27600 \checkmark$ $M_{\rm r}$ of polyester = $27600 - 199 \times 18 = 24018 \checkmark$	2	AO2.2 ×2	ALLOW ECF from incorrect M_r Alternative method based on repeat unit: M_r of 200 repeat units = 200 x 120 = 24000 \checkmark M_r of polymer = 24000 + 1 + 17 = 24018 \checkmark
(e) (i)*	Refer to marking instructions on page 4 of mark scheme	6	AO3.3	Indicative scientific points may include:

Question	Answer	Marks	AO element	Guidance
L C A F for a sister of the control	Correct calculation of the mass of (CH ₃) ₂ CHCHO. AND Planned synthesis includes oxidation of aldehyde and formation of ester C with most of the reagents and conditions identified and equations are mostly correct. There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Calculation of the mass of (CH ₃) ₂ CHCHO is partly correct AND Planned synthesis includes oxidation of aldehyde and cormation of ester C with some of the reagents and conditions identified DR Attempts to calculate mass of (CH ₃) ₂ CHCHO but makes ittle progress AND Planned synthesis includes oxidation of aldehyde and cormation of ester C with most of the reagents and conditions identified and equations for each step are mostly correct There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence.		×6	Calculation of mass of (CH ₃) ₂ CHCHO Using moles • $n(\text{ester}) = \frac{12.75}{102.0}$ = 0.125 (mol) • $n((\text{CH}_3)_2\text{CHCHO}) = 0.125 \times \frac{100}{40}$ = 0.3125 (mol) • Mass of $(\text{CH}_3)_2\text{CHCHO} = 72.0 \times 0.3125$ = 22.5 g Using mass • Theoretical mass of ester = $12.75 \times \frac{100}{40}$ = 31.875 (g) • Theoretical $n((\text{CH}_3)_2\text{CHCHO}) = \frac{31.875}{102}$ = 0.3125 (mol) • Mass of $(\text{CH}_3)_2\text{CHCHO} = 72.0 \times 0.3125$ = 22.5 g ALLOW small slip/rounding errors such as errors in Mr e.g. use of 71 instead of 72 for $(\text{CH}_3)_2\text{CHCHO}$ Examples of partly correct calculations Mass = 3.60 g from $0.125 \times \frac{40}{100} \times 72$ (% yield inverted) Mass = 9.00 g from 0.125×72

Question	Answer	Marks	AO element	Guidance
	Calculation of the mass of (CH ₃) ₂ CHCHO is partly correct OR Planned synthesis includes both steps with some of the reagents and conditions identified OR Attempts equations for both steps but these may contain errors OR Describes one step of the synthesis with reagents, conditions and equation mostly correct There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. O marks No response or no response worthy of credit.			Synthesis: reagents and conditions Step 1: Oxidation of aldehyde (CH ₃) ₂ CHCHO • Reagents: Cr ₂ O ₇ ²⁻ /H ⁺ • Conditions: reflux • Equation: (CH ₃) ₂ CHCHO + [O] → (CH ₃) ₂ CHCOOH Step 2: Formation of ester C • Reagents: methylpropanoic acid/(CH ₃) ₂ CHCOOH and methanol/CH ₃ OH • Conditions: acid (catalyst) reflux/heat • Equation: (CH ₃) ₂ CHCOOH + CH ₃ OH → (CH ₃) ₂ CHCOOCH ₃ + H ₂ O IGNORE attempts to form methanol in synthesis
(e) (ii)		2	AO2.7 × 2	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous

Questi	ion	Answer	Marks	AO element	Guidance
		Y (43) = (CH ₃) ₂ CH ⁺ ✓ Z (71) (CH ₃) ₂ CHCO ⁺ ✓ If '+' charge is missing/incorrect but the structures of both fragments are correct, award one mark		Cicinoni	ALLOW positive charge to be anywhere on the structure For Y and Z, ALLOW structure of a feasible fragment ion formed from ester C H H ₃ C C
					CH_3 O— CH_3 Ester C e.g. Y (43) = CH_3OC^+ Z (71) = $^+CCOOCH_3$
					ALLOW 1 mark if both correct ions are shown but in the incorrect columns ALLOW 1 mark for both correct ions if one or both have an 'end bond' ALLOW 1 mark if both ions are shown using correct molecular formulae
		Total	22		

19 (a) (i) Similarities Orbital overlap (sideways) overlap of p orbitals π bond π bond/system/ring above and below (bonding (C) atoms/ring/plane) The bond is reference to s orbital overlap of p orbital overlap of p orbital overlap of p orbital overlap is not p orbital label is required for first mark in lignore C=C in diagram showing π bond is orbital overlap/s bonds. ALLOW from labelled diagram showing π bond e.g. The bond is not possible in required for second mark in a bond/π electrons label is required for second mark.	Q	uesti	ion	Answer	Marks	AO element	Guidance
	19	(a)	(i)	Orbital overlap (sideways) overlap of p orbitals ✓ π bond π bond/system/ring above and below (bonding (C)	3	AO1.1	CROSSES ETC ALLOW diagram showing orbital overlap e.g. p orbital c c c c c c c c c c c c c c c c c c c

Question	Answer	Marks	AO element	Guidance
	Difference Kekule has: alternating π bonds OR 3 π bonds / localised (π electrons) / overlap in one direction / 2 electrons in π bond AND Delocalised has: π ring (system) / all p orbitals overlap OR (π electrons) spread around ring / overlap in both directions / 6 electrons in π bond /			ALLOW diagram showing π bond in both Kekule AND delocalised models e.g AND Kekule Delocalised
(ii)	Any 2 pieces of evidence from (✓ ✓) Bond length (C–C) bond length is between single (C–C) and double bond (C=C) OR all (C–C) bond lengths are the same ΔH hydrogenation ΔH hydrogenation less (exothermic) than expected Resistance to reaction Benzene is less reactive than alkenes OR bromination of benzene requires a catalyst/halogen carrier OR benzene does not react with/decolourise bromine (at room temperature) OR benzene reacts by substitution OR benzene does not (readily) react by addition	2	AO1.1 ×2	ALLOW (C–C) bond enthalpy is between single (C–C) and double bond (C=C) OR all (C–C) bond enthalpies are the same IGNORE enthalpy of hydration Benzene is unreactive is not sufficient (no comparison to alkene) For halogen carrier, ALLOW name or formula of suitable catalyst e.g. Fe, AlCl ₃ , FeBr ₃

Question	Answer	Marks	AO element	Guidance
Question (b) (i)	Polymer from D $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Marks 3	AO element AO2.5 AO1.2 AO2.5	For BOTH structures, ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous 'End bonds' MUST be shown BUT ALLOW ECF IF end bonds omitted in both structures DO NOT ALLOW more than 2 repeat units BUT ALLOW ECF in subsequent structure IGNORE connectivity of C ₆ H ₅
				C

Question	Answer	Marks	AO element	Guidance
(ii)	D Addition / polyalkene AND E: Condensation / polyamide ✓	1	AO1.1	DO NOT ALLOW 'additional'
(iii)	Formation of electrophile $CH_3COCI + AICI_3 \rightarrow CH_3-C^+=O + AICI_4^- \checkmark$ Mechanism $Curly arrow from \pi\text{-bond to } CH_3C^+=O \checkmark$ $H_3C - \overset{+}{C} = O$	5	AO2.5	ANNOTATE ANSWER WITH TICKS AND CROSSES ALLOW '+' charge anywhere on CH ₃ C ⁺ O i.e. CH ₃ CO ⁺ NOTE: curly arrows can be straight, snake-like, etc. but NOT double headed or half headed arrows 1st curly arrow must • go to the C of C=O AND • start from, OR close to circle of benzene ring #\$\frac{1}{2} = 0

Question	Answer	Marks	AO element	Guidance
	Correct intermediate ✓ Curly arrow from C–H bond to reform π-ring ✓		AO3.1 AO2.5	
	H COCH ₃ + D			T-ring should cover approximately 4 of the 6 sides of the benzene ring structure AND the correct orientation, <i>i.e.</i> gap towards C with COCH ₃ ALLOW + sign anywhere inside the 'hexagon' of intermediate
	Regeneration of catalyst $H^{+} + A l C l_{4}^{-} \longrightarrow A l C l_{3} + H C l \checkmark$		AO1.2	curly arrow must start from, OR be traced back to, any part of C-H bond and go inside the 'hexagon'

Question	Answer	Marks	AO element	Guidance
(iv)	One mark for each correct structure/reagent CH3 HOCON NaBr/Br AND H2SO4/H V CH3 Br C-CN NH3 AND ethanol OR excess NH3	7	AO2.5 ×7	ALLOW any vertical bond to the OH OR NH ₂ groups e.g. ALLOW OR AND OR NH ₂ H ₂ N DO NOT ALLOW OH—, OR NH ₂ —but ALLOW ECF for subsequent use in this part For elimination, IGNORE 'concentrated', 'dilute' with acids BUT DO NOT ALLOW H ₂ O/steam/(aq) ALLOW HBr for NaBr/H ₂ SO ₄ For hydrolysis. IGNORE missing (aq) ALLOW HNO ₃ for hydrolysis but DO NOT ALLOW 'HNO ₃ and H ₂ SO ₄ ' ALLOW final 2 stages in opposite order i.e. NH ₃ before acid hydrolysis NH ₃ AND ethanol OR excess NH ₃ OR H ₂ NO ₄ HCI
	Total	23		

Q	Question		Answer	Marks	AO element	Guidance
20	(a)	(i)	Movement of an electron pair ✓	1	AO1.1	For electron pair, ALLOW lone pair OR bonding pair OR 2 electrons
	(a)	(ii)	→ + H₂0 Correct carbon skeleton ✓ '+' charge on correct carbon skeleton ✓	2	AO3.1 ×2	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous IGNORE any other products
	(a)	(iii)	Heterolytic one (bonded) atom/O receives both/2 electrons ✓ Fission Breaking of a covalent bond OR breaking of C-O bond ✓	2	AO1.2	ALLOW 2 electrons go to one (bonded) atom/O IGNORE formation of ions/radicals For O atom, ALLOW species DO NOT ALLOW element OR molecule 'Bond breaking' is not sufficient (no reference to covalent)

$H_3C - C - CI$ but NOT double he Curly arrow from or go to the C	
H ₃ C—C H ₃ C OH CIT as product OH OH OH CIT as product OH OR start from OH Curly arrow to CI AND • start from, across wid • OR start from OH Curly arrow from	s can be straight, snake-like, etc. eaded or half headed arrows OHT must of C=O OR be traced back to any point of lone pair on O of OHT OHT OHT OHT OHT OHT OHT OHT OHT OHT OHT

Question	Answer	Marks	AO element	Guidance
				 go to C=O bond AND start from, OR be traced back to, any point across width of lone pair OR start from '-' charge of O- Curly arrow from C-Cl bond must start from, OR be traced back to, any part of C-Cl bond and go to Cl
				✓ ✓ ×
(b) (ii)	(OH⁻) donates an electron pair/lone pair OR (OH⁻ acts as a) nucleophile ✓	1	AO1.2	
	Total	10		

Question	Answer	Marks	AO element	Guidance	
21*	Please refer to the marking instructions on page 4 of this mark scheme for guidance on how to mark this question. Level 3 (5–6 marks) Structure is CH ₃ C ₆ H ₄ CH(CH ₃)COOH AND Most of the data analysed. There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3–4 marks) A viable aromatic structure of C ₁₀ H ₁₂ O ₂ that contains C=O AND most key features consistent with spectral data AND Some of the spectral data analysed There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence.	6	AO1.2 × 2 AO3.1 × 2 AO3.2 × 2	Indicative scientific points:	

Question	Answer	Marks	AO element	Guidance
	Level 1 (1–2 marks) Correct determination of empirical formula and/or molecular formula. OR Analyses some of the IR and NMR data. OR Analyses most of the NMR data. There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. O marks No response or no response worthy of credit.		eiement	Correct Structure • CH ₃ C ₆ H ₄ CH(CH ₃)COOH ALLOW 2-, 3- OR 4- substitution of ring i.e. OR H ₃ C CH ₃ H ₃ C COOH OR CH ₃ CH ₃ CH ₃ CH ₃ COOH OR CH ₃ CH ₃ COOH Spectral analysis 1H NMR • δ = 1.6 ppm, doublet, 3H CH ₃ -CH- • δ = 2.3 ppm, singlet, 3H Ar-CH ₃ • δ = 2.7 ppm, quartet, 1H CO-CH-CH ₃ OR Ar-CH-CH ₃ / C ₆ H ₅ -CH-CH ₃ • δ = 7.1-7.5 ppm, multiplet, 4H C ₆ H ₄ - ALLOW approximate values for chemical shifts. IR: • peak at 2300–3700 (cm ⁻¹) is O-H • peak at ~1720 (cm ⁻¹) is C=O • unknown is a carboxylic acid ALLOW ranges from Data Sheet IGNORE references to C-O peaks
	Total	6		Terretta totologo to o o pound

OCR (Oxford Cambridge and RSA Examinations) The Triangle Building **Shaftesbury Road** Cambridge **CB2 8EA**

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627

Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA Registered Company Number: 3484466 **OCR** is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office

Telephone: 01223 552552 Facsimile: 01223 552553

© OCR 2019

