

Please write clearly in	n block capitals.
Centre number	Candidate number
Surname	
Forename(s)	
Candidate signature	I declare this is my own work.

GCSE COMBINED SCIENCE: TRILOGY

Higher Tier Chemistry Paper 1H

Monday 22 May 2023 Morning Time allowed: 1 hour 15 minutes

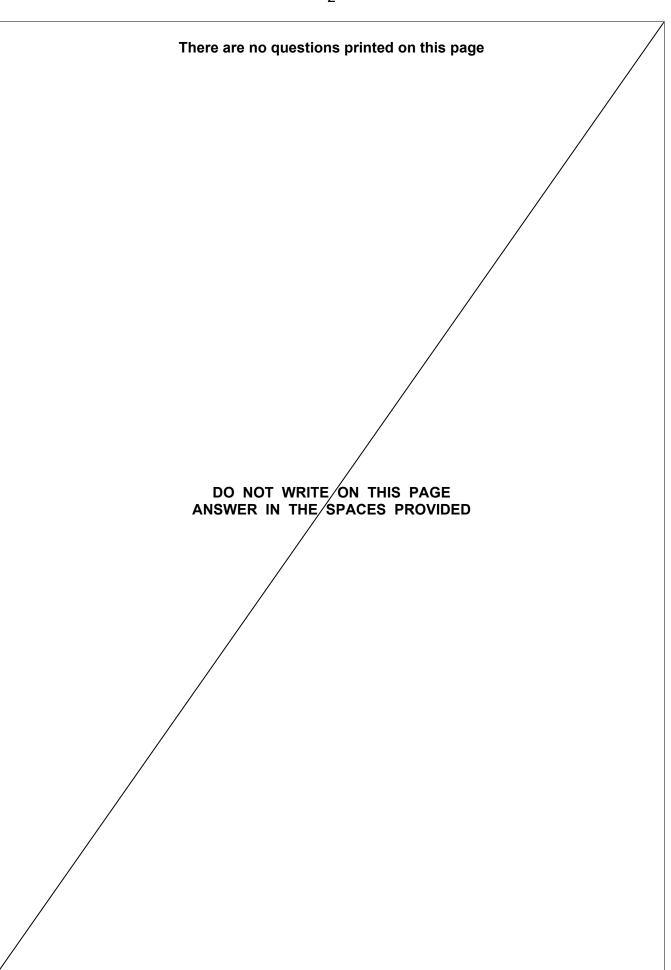
Materials

For this paper you must have:

- a ruler
- · a scientific calculator
- the periodic table (enclosed).

Instructions

- Use black ink or black ball-point pen.
- · Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions in the spaces provided.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.


Information

- The maximum mark for this paper is 70.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

For Examiner's Use				
Question	Mark			
1				
2				
3				
4				
5				
6				
7				
TOTAL				

Do not write outside the

0 1	This question is about carbon dioxide.	
	Carbon dioxide is soluble in water and forms an acidic solution.	
0 1.1	Which ion makes the solution acidic?	[1 mark]
0 1.2	Name an indicator that could be used to test if the solution is acidic. Give the result of the test.	[2 marks]
	Indicator	
	Result	

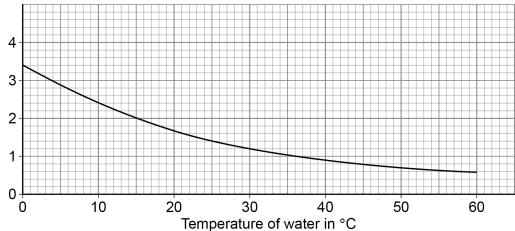

Question 1 continues on the next page

Figure 1 shows the mass of carbon dioxide that will dissolve in 1 dm³ of water at different temperatures.

Mass of carbon dioxide in grams dissolved in 1 dm³ of water

0 1. 3 How does the solubility of carbon dioxide change as the temperature of the water increases?

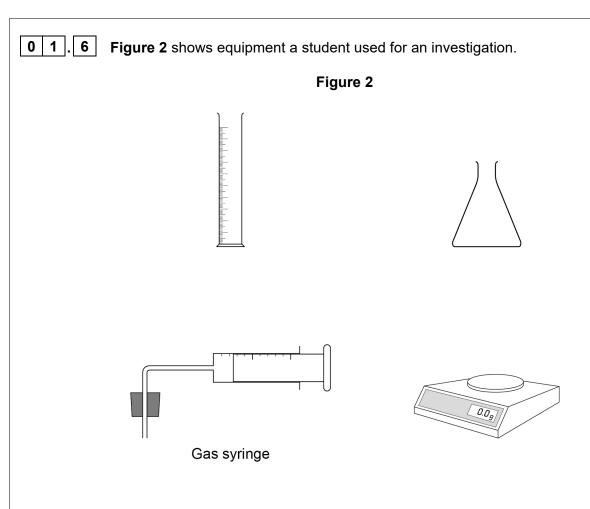
[1 mark]

Tick (✓) one box.

The solubility decreases

The solubility does not change

The solubility increases



isesprout.co.uk
找名校导师,用小草线上辅导(微信小程序同名)

0 1.4	Carbon dioxide dissolves in water to form an acidic solution.			
	How does the pH of the solution change as the temperature of the water increases?			
	Use Figure 1.			
	[1 mark] Tick (✓) one box.			
	pH of the solution decreases			
	pH of the solution does not change			
	pH of the solution increases			
	Calcium carbonate reacts with hydrochloric acid to produce carbon dioxide.			
	The equation for the reaction is:			
	$CaCO_3(s) + 2HCl(aq) \rightarrow CaCl_2(aq) + CO_2(g) + H_2O(x)$			
0 1 5	What is the atota asympholical in the acquation?			
0 1 . 5	What is the state symbol (x) in the equation? [1 mark]			
	Tick (✓) one box.			
	(aq) (g) (l) (s)			
	Question 1 continues on the next page			

Describe a method the student could	use.

Turn over for the next question

Turn over ►

|--|

Lithium hydroxide reacts with sulfuric acid to produce lithium sulfate.

The equation for the reaction is:

$$2LiOH + H_2SO_4 \rightarrow Li_2SO_4 + 2H_2O$$

0 2.1 What type of reaction is this?

[1 mark]

 $\boxed{\mathbf{0} \ \mathbf{2}}$. $\boxed{\mathbf{2}}$ Calculate the relative formula mass (M_r) of sulfuric acid (H_2SO_4).

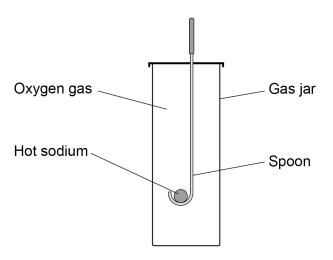
Relative atomic masses (A_r) : H = 1 O = 16 S = 32

[2 marks]

Relative formula mass (*M*_r) = _____

0	

0 2.3	Calculate the percentage by mass of oxygen in lithium sulfate (Li ₂ SO ₄).		•
	Relative atomic mass (A_r) : O = 16		
	Relative formula mass (M_r): Li ₂ SO ₄ = 110		
	Give your answer to 2 significant figures.	.,	
		[4 marks]	
	Percentage by mass of oxygen (2 significant figures) =	%	
0 2.4	A solution of lithium sulfate contains 0.30 g of lithium sulfate in 25 cm ³ .		
	Calculate the concentration of lithium sulfate in g/dm ³ .		
		[3 marks]	
	,		_
	Concentration =	g/dm³	L


0 3	Sodium is in Group 1 of the periodic table. Sodium reacts with oxygen to produce sodium oxide.
0 3.1	Balance the equation for the reaction. [1 mark]
	$__$ Na + O ₂ \rightarrow $__$ Na ₂ O
0 3.2	Explain what happens to sodium atoms and to oxygen atoms when sodium reacts with oxygen to produce sodium oxide (Na_2O).
	Answer in terms of electrons. [4 marks]

0 3. 3 Sodium burns in a gas jar of oxygen.

Figure 3 shows the apparatus.

Figure 3

Give **two** observations seen during the reaction.

[2 marks]

1			
_			
2			

0 3 . 4 Describe **two** differences in the observations if potassium is used instead of sodium.

[2 marks]

2_____

Turn over ▶

1

4
ᅜ
花址交
汇
区位 公山 三
Ξ,
用小早线工铺设
7
世
ίķ
发上铜号
田田
41
\subseteq
쾿
刯
小種子
4
i
水
_

0 4	·				the halogens	s, neutrons and electrons.	
0 4.1	What is the			ery of	the proton, n	eutron and electron?	[1 mark]
	electron	\rightarrow	neutron	\rightarrow	proton		
	electron	\rightarrow	proton	\rightarrow	neutron		
	neutron	\rightarrow	proton	\rightarrow	electron		
	proton	\rightarrow	electron	\rightarrow	neutron		

0 4. 2 Table 1 shows the mass of a proton and of an electron.

Table 1

Name of particle	Mass in kg
Proton	1.673 × 10 ^{−27}
Electron	9.109 × 10 ⁻³¹

Calculate how many times heavier a proton is than an electron.	[2 marks]		
Times heavier a proton is than an electron =			

	A bromine atom can be represented as $^{81}_{35} \mathrm{Br}.$	
0 4.3	What is the number of neutrons in this bromine atom?	[1 mark]
0 4.4	What is the number of electrons in a bromide ion ?	[1 mark]

5 Chlorine has two isotopes.

Table 2 shows the percentage abundance of the two isotopes of chlorine.

Table 2

Isotope	Percentage (%) abundance
³⁵ Cl	75.77
³⁷ Cl	24.23

Ca	Iculate	the	relative	atomic	mass	(A_r)) ot	ch	lorine	
----	---------	-----	----------	--------	------	---------	------	----	--------	--

Give your answer to 2 decimal places	Give :	e vour	answer	to 2	decimal	places
--------------------------------------	--------	--------	--------	------	---------	--------

	[3 marks
Relative	atomic mass (2 decimal places) =

Turn over ▶

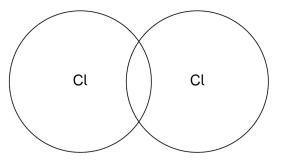
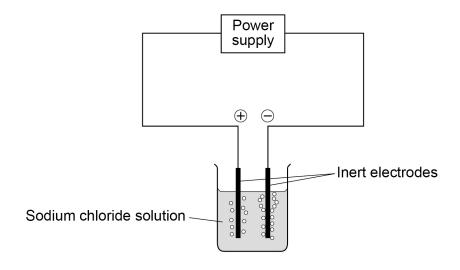

0 4 . 6

Figure 4 shows the outer shells in one molecule of chlorine (Cl₂).

Complete the dot and cross diagram to show the electrons in the outer shells.

[2 marks]

Figure 4


0 5	During electrolysis ions are discharged at the electrodes to produce elements A student investigates the electrolysis of sodium chloride.	S .
0 5.1	Why does solid sodium chloride not conduct electricity?	[1 mark]
0 5.2	Sodium chloride solution conducts electricity.	
	Complete the sentence.	[1 mark]
	Sodium chloride also conducts electricity when	·

Question 5 continues on the next page

Figure 5 shows the apparatus for the electrolysis of sodium chloride solution.

Figure 5

0 5 . 3 Suggest an element that could be used to make the inert electrodes.

[1 mark]

0 5.4 Complete the half equation for the production of chlorine (Cl₂) at the positive electrode.

[2 marks]

 $\mathsf{Cl}^- \longrightarrow \mathsf{+}$

-	d Personal Tutor from www.wisesprout.co.uk
	找名校导师,用小草线上辅导(微信小程序同名)

0 5 . 5 Sodium chloride solution has a pH of 7 During the electrolysis of sodium chloride solution: • hydrogen gas is produced at the negative electrode • the pH of the solution increases. Explain why. [4 marks]

Turn over for the next question

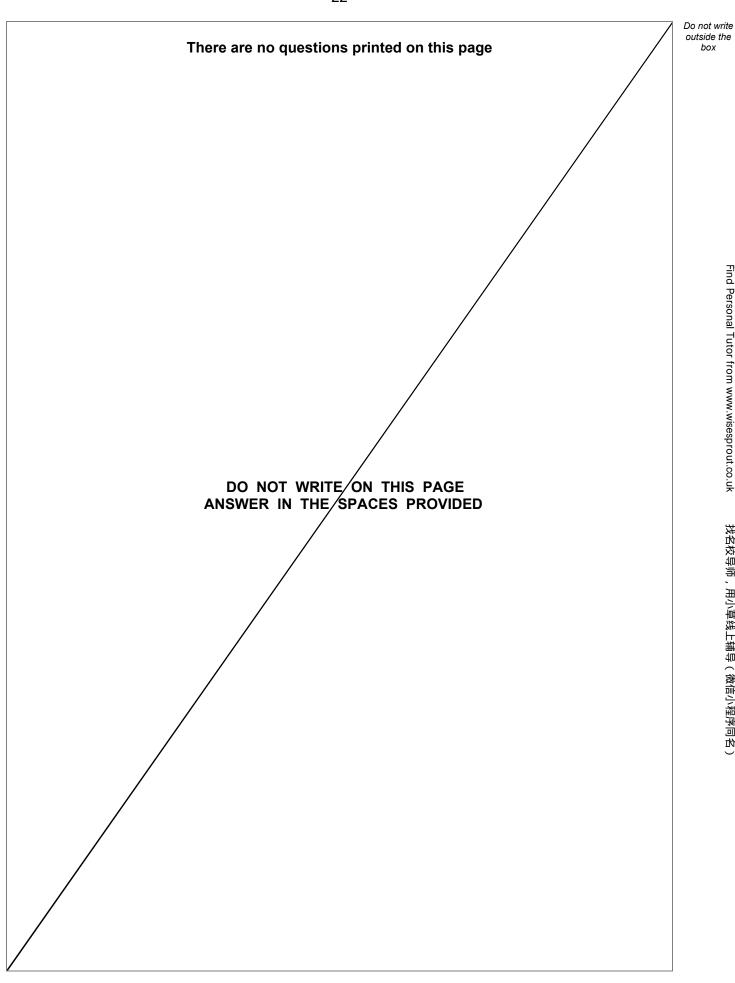
Turn over ▶

0 6	Acids react with some metals to produce soluble salts.	
	A student adds magnesium to hydrochloric acid until no more acid reacts an excess magnesium remains.	d
	The equation for the reaction is:	
	$Mg(s) + 2HCl(aq) \rightarrow MgCl_2(aq) + H_2(g)$	
0 6.1	Describe how solid magnesium chloride is obtained from the reaction mixture	e. [2 marks]
0 6.2	The reaction between magnesium and hydrochloric acid is a redox reaction.	
	Explain what happens to the magnesium atoms in this reaction.	[2 marks]

找名校导师,用小草线上辅导(微信小程序同名)

0 6 . 3	0.72 g of magnesium is added to 100 cm ³ of hydrochloric acid.
	The hydrochloric acid is in excess.
	Calculate the concentration of the magnesium chloride (MgCl $_{2}$) solution produced in g/dm 3 .
	Relative atomic mass (A_r) : Mg = 24
	Relative formula mass (M_r): MgCl ₂ = 95 [6 marks]
	Concentration =g/dm ³

Turn over for the next question



0 7	This question is about structure and properties.
0 7.1	Which pair of substances both contain atoms in hexagonal rings? [1 mark] Tick (✓) one box.
	Diamond and graphite
	Fullerenes and graphene
	Nanotubes and silica
0 7.2	Explain why the structure of copper allows the conduction of thermal energy. [3 marks]

0 7.3	Explain why copper oxide (CuO) has a high melting point. [3 marks]	Do not write outside the box
0 7.4	Explain why water (H ₂ O) has a low melting point. [3 marks]	Find Personal Tutor from www.wisesprout.co.uk
		找名校导师,
	END OF QUESTIONS	10 10 10 10 10 10 10 10 10 10 10 10 10 1

Do not write outside the box

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.
	Copyright information
	For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.
	Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.
	Copyright © 2023 AQA and its licensors. All rights reserved.

