

Please write clearly in	n block capitals.	
Centre number	Candidate number	
Surname		
Forename(s)		
Candidate signature	I declare this is my own work.	/

GCSE CHEMISTRY

H

Higher Tier Paper 1

Thursday 14 May 2020 Morning Time allowed: 1 hour 45 minutes

Materials

For this paper you must have:

- a ruler
- a calculator
- the periodic table (enclosed).

Instructions

- · Use black ink or black ball-point pen.
- · Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

Information

- The maximum mark for this paper is 100.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

For Examiner's Use			
Question	Mark		
1			
2			
3			
4			
5			
6			
7			
8			
9			
TOTAL			

		2				
0 1	This question is a	about structure and bonding.				
0 1.	1 Which two subst	Which two substances have intermolecular forces between particles?				
	Tick (✓) two box	es.	[2 marks]			
	Diamond					
	Magnesium					
	Poly(ethene)					
	Sodium chloride					
	Water					
0 1.	2 Table 1 shows th	ne structures of three compounds.				
		Table 1	Diagrams not to scale			
	Compound	Structur	е			
			Key			
	Carbon dioxide		0			
			○ c			
			Key			
	Magnesium oxide		O ² - Mg ²⁺			

Silicon dioxide

Key

0

Si

	from www.wisesprout.co.uk
8	找名校导师,用小草线上辅导(
	导(微信小程序同名)

carbon dioxide	
magnesium oxide	
• silicon dioxide.	
-	

Turn over for the next question

0 2	This question is about metals and the reactivity series	S.
0 2.1	Which two statements are properties of most transition	on metals? [2 marks]
	Tick (✓) two boxes.	
	They are soft metals.	
	They form colourless compounds.	
	They form ions with different charges.	
	They have high melting points.	
	They have low densities.	
0 2.2	A student added copper metal to colourless silver niti	rate solution.
	The student observed:	
	 pale grey crystals forming 	
	• the solution turning blue.	
	Explain how these observations show that silver is le	ss reactive than copper.
	·	[3 marks

0 2 . 3	A student is given three metals, X , Y and Z to identify. The metals are magnesium, iron and copper.
	Plan an investigation to identify the three metals by comparing their reactions with dilute hydrochloric acid.
	Your plan should give valid results. [4 marks]

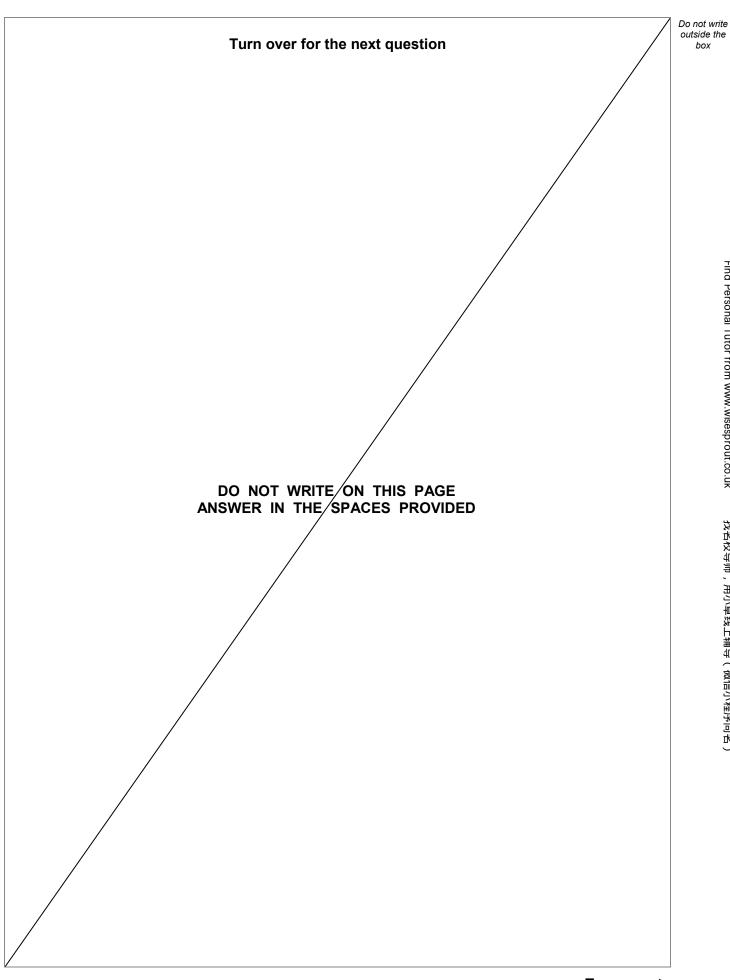
Question 2 continues on the next page

11

0 2 . 4

Metal **M** has two isotopes.

Table 2 shows the mass numbers and percentage abundances of the isotopes.


Table 2

Mass number	Percentage abundance (%)
203	30
205	70

Calculate the relative atomic mass (A_r) of metal **M**.

Relative atomic mass (1 decimal place) =

Give your answer to 1 decimal place.	[2 marks]

0 3 This

This question is about silver iodide.

Silver iodide is produced in the reaction between silver nitrate solution and sodium iodide solution.

The equation for the reaction is:

$$AgNO_3(aq) + Nal(aq) \rightarrow Agl(s) + NaNO_3(aq)$$

0 3.1 A student investigated the law of conservation of mass.

This is the method used.

- 1. Pour silver nitrate solution into a beaker labelled A.
- 2. Pour sodium iodide solution into a beaker labelled B.
- 3. Measure the masses of both beakers and their contents.
- 4. Pour the solution from beaker B into beaker A.
- 5. Measure the masses of both beakers and their contents again.

Table 3 shows the student's results.

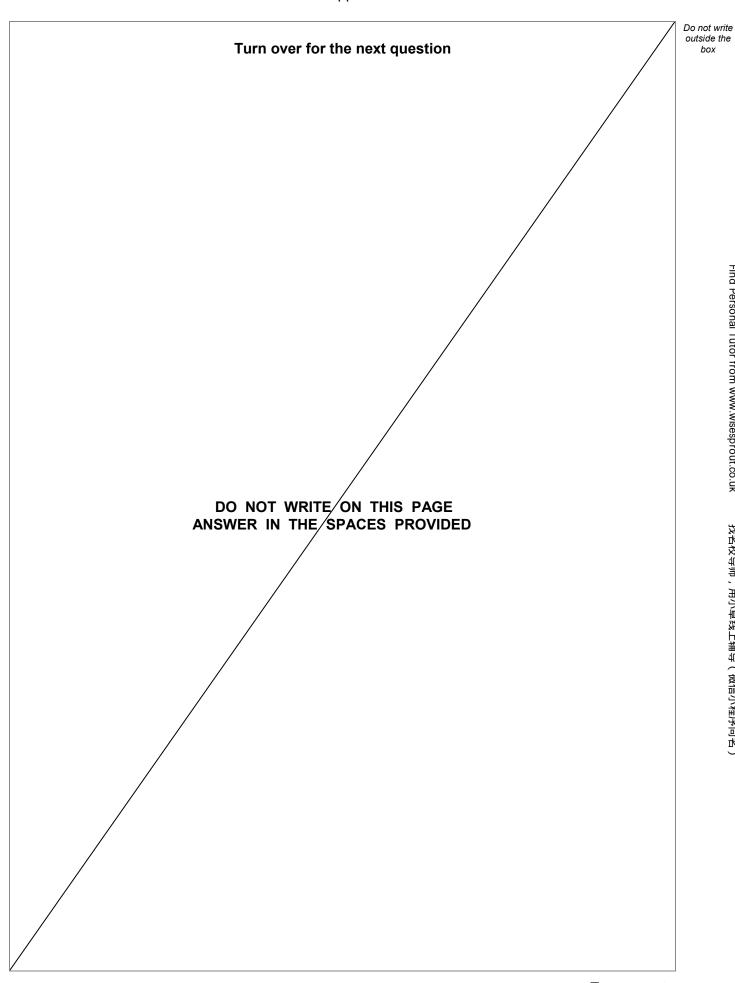
Table 3

	Mass before mixing in g	Mass after mixing in g
Beaker A and contents	78.26	108.22
Beaker B and contents	78.50	48.54

Explain how the results demonstrate the law of conservation of mass.

You should use data from Table 3 in your answer.

[2	m	а	rl	ks	1
-		ш		ΛЭ	



0 3.2	Suggest how the student could separate the insoluble silver iodide from the r the end of the reaction.	nixture at
		[1 mark]
	The student purified the separated silver iodide.	
	This is the method used.	
	1. Rinse the silver iodide with distilled water.	
	2. Warm the silver iodide.	
0 3.3	Suggest one impurity that was removed by rinsing with water.	[1 mark]
0 3.4	Suggest why the student warmed the silver iodide.	F4
		[1 mark]
	Question 3 continues on the next page	

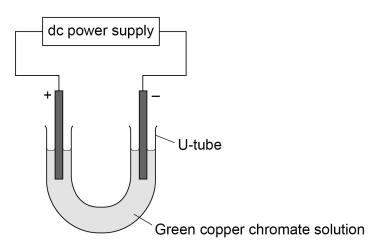
0 3.5	Calculate the percentage atom economy for the production of silver iodide in this reaction.	•
	The equation for the reaction is:	
	$AgNO_3(aq) + Nal(aq) \rightarrow Agl(s) + NaNO_3(aq)$	
	Give your answer to 3 significant figures.	
	Relative formula masses (M_r): AgNO ₃ = 170 NaI = 150 AgI = 235 NaNO ₃ = 85	
	[4 marks]	
	Percentage atom economy (3 significant figures) =%	
0 3 . 6	Give one reason why reactions with a high atom economy are used in industry. [1 mark]	

box

0 4

This question is about electrolysis.

A student investigated the electrolysis of copper chromate solution.


Copper chromate solution is green.

Copper chromate contains:

- blue coloured Cu2+ ions
- yellow coloured CrO₄²⁻ ions.

Figure 1 shows the apparatus used.

Figure 1

The student switched the power supply on.

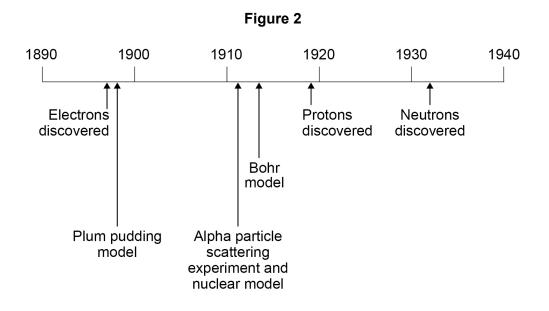
The student observed the changes at each electrode.

Table 4 shows the student's observations.

Table 4

Changes at positive electrode	Changes at negative electrode
Solution turned yellow	Solution turned blue
Bubbles formed at the electrode	Solid formed on the electrode

0 4.1	Explain why the colour changed at the positive electrode. [2 marks]	Do not write outside the box
0 4.2	The gas produced at the positive electrode was oxygen.	
	The oxygen was produced from hydroxide ions. Name the substance in the solution that provides the hydroxide ions. [1 mark]	
0 4.3	Describe how the solid forms at the negative electrode. [3 marks]	TOTT WWW. WIDOOD! Out. Out. Out.
		7 P , 73 3 '+ 28 1 + 48 5 (MAID 3 14 12 11 12
0 4.4	The student repeated the investigation using potassium iodide solution instead of copper chromate solution.	Į Į
	Name the product at each electrode when potassium iodide solution is electrolysed. [2 marks] Negative electrode	
	Positive electrode	8



0 5

This question is about the development of scientific theories.

Figure 2 shows a timeline of some important steps in the development of the model of the atom.

0 5 . 1 The plum pudding model did not have a nucleus.

Describe **three** other differences between the nuclear model of the atom and the plum pudding model.

[3 marks]

Niels Bohr adapted the nuclear model.

8

	Describe the change that Bohr made to the nuclear model. [2 marks]
0 5.3	Mendeleev published his periodic table in 1869.
	Mendeleev arranged the elements in order of atomic weight.
	Mendeleev then reversed the order of some pairs of elements.
	A student suggested Mendeleev's reason for reversing the order was to arrange the elements in order of atomic number.
	Explain why the student's suggestion cannot be correct.
	Use Figure 2. [2 marks]
0 5.4	Give the correct reason why Mendeleev reversed the order of some pairs of elements. [1 mark]

0 5.

0 6	This question is about displacement reactions.	
0 6.1	The displacement reaction between aluminium and iron oxide has a high activation energy.	
	What is meant by 'activation energy'?	[1 mark]
0 6.2	A mixture contains 1.00 kg of aluminium and 3.00 kg of iron oxide.	
	The equation for the reaction is:	
	$2\text{Al} + \text{Fe}_2\text{O}_3 \rightarrow 2\text{Fe} + \text{Al}_2\text{O}_3$	
	Show that aluminium is the limiting reactant.	
	Relative atomic masses (A_r): O = 16 Al = 27 Fe = 56	[4 marks]

Magnesium displaces zinc from zinc sulfate solution.

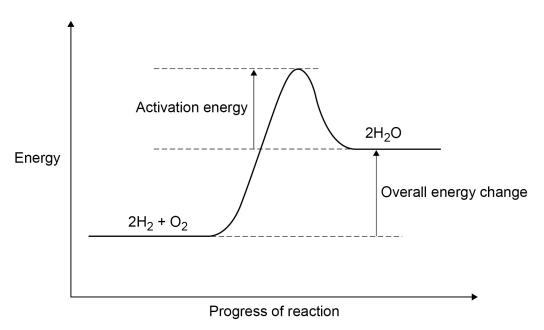
O 6 . 3 Complete the ionic equation for the reaction.You should include state symbols.

[2 marks]

Mg(s) + Zn²⁺(aq)
$$\rightarrow$$
 _____ + ____

Explain why the reaction between magnesium atoms and zinc ions is both oxidation and reduction.

[2 marks]


Turn over for the next question

- 0 7 The reaction between hydrogen and oxygen releases energy.
- 0 7. 1 A student drew a reaction profile for the reaction between hydrogen and oxygen.

Figure 3 shows the student's reaction profile.

Figure 3

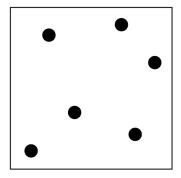
The student made **two** errors when drawing the reaction profile.

Describe the **two** errors.

[2 marks]

2			

Give two advantages of using hydrogen fuel cells instead of using rechargeable cells to power cars. [2 marks] 1 2 Reactions occur at the positive electrode and at the negative electrode in a hydrogen fuel cell.	0 7.2	The reaction between hydrogen and oxygen in a hydrogen fuel cell is used to produce electricity.		Do not outsid bo
rechargeable cells to power cars. [2 marks] 1 2 Reactions occur at the positive electrode and at the negative electrode in a hydrogen fuel cell.		Hydrogen fuel cells and rechargeable cells are used to power some cars.		
2 Reactions occur at the positive electrode and at the negative electrode in a hydrogen fuel cell.			[2 marks]	
Reactions occur at the positive electrode and at the negative electrode in a hydrogen fuel cell.		1		
0 7. 3 Reactions occur at the positive electrode and at the negative electrode in a hydrogen fuel cell.		2		
hydrogen fuel cell.				
	0 7.3	·		
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				
Write a half equation for one of these reactions. [1 mark]		vvrite a nair equation for one of these reactions.	[1 mark]	


Question 7 continues on the next page

0 7.4 The three states of matter can be represented by a simple particle model.

Figure 4 shows a simple particle model for hydrogen gas.

Figure 4

Give two limitations of this simple particle model for hydrogen gas.

[2 marks]

1			
2			

The hydrogen gas needed to power a car for 400 km would occupy a large volume.Suggest one way that this volume can be reduced.[1 mark]

^
龙竹交叫写,
用小旱线上铺守(
(微信小程序回名)

0 7.6	The energy needed for a car powered by a hydrogen fuel cell to travel 100 km is 58 megajoules (MJ).
	The energy released when 1 mole of hydrogen gas reacts with oxygen is 290 kJ
	The volume of 1 mole of a gas at room temperature and pressure is 24 dm ³
	Calculate the volume of hydrogen gas at room temperature and pressure needed for the car to travel 100 km [4 marks]
	Volume of hydrogen gas =dm³

Turn over for the next question

Turn over ▶

0 8 This question is about the halogens.

Table 5 shows the melting points and boiling points of some halogens.

Table 5

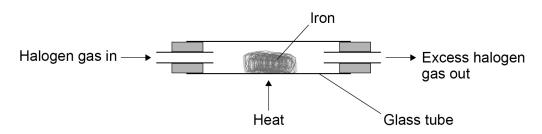
Element	Melting point in °C	Boiling point in °C
Fluorine	-220	-188
Chlorine	-101	-35
Bromine	-7	59

0	8 .	1	What is the state of bromine at 0 °C and at 100 °C
---	-----	---	--

[1 mark]

Tick (✓) one box.

State at 0 °C	State at 100 °C	
Gas	Gas	
Gas	Liquid	
Liquid	Gas	
Liquid	Liquid	
Solid	Gas	
Solid	Liquid	


0 8.2	Explain the trend in boiling points of the halogens shown in Table 5 . [4 mar	rks]
0 8 . 3	Why is it not correct to say that the boiling point of a single bromine molecule is 59 °C? [1 magestate of the correct to say that the boiling point of a single bromine molecule	ark]
	Question 8 continues on the next page	
	Question a continues on the next page	

Iron reacts with each of the halogens in their gaseous form.

Figure 5 shows the apparatus used.

0 8.4	Give one reason why this experiment should be done in a fume cupboard.	[1 mark]
0 8.5	Explain why the reactivity of the halogens decreases going down the group.	[3 marks]

0 8 . 6

A teacher investigated the reaction of iron with chlorine using the apparatus in **Figure 5**.

The word equation for the reaction is:

iron + chlorine → iron chloride

The teacher weighed:

- the glass tube
- the glass tube and iron before the reaction
- the glass tube and iron chloride after the reaction.

Table 6 shows the teacher's results.

Table 6

	Mass in g
Glass tube	51.56
Glass tube and iron	56.04
Glass tube and iron chloride	64.56

Calculate the simplest whole number ratio of:

moles of iron atoms : moles of chlorine atoms

Determine the balanced equation for the reaction.

Relative atomic masses (A _r):	Cl = 35.5	Fe = 56		[6 marks]
Moles of iron atoms : moles of	f chlorine ato	ms =	;;;;	
Equation for the reaction				

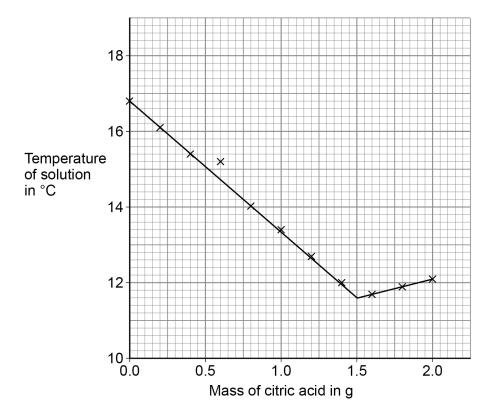
Turn over ►

0 9

This question is about citric acid (C₆H₈O₇).

Citric acid is a solid.

A student investigated the temperature change during the reaction between citric acid and sodium hydrogencarbonate solution.

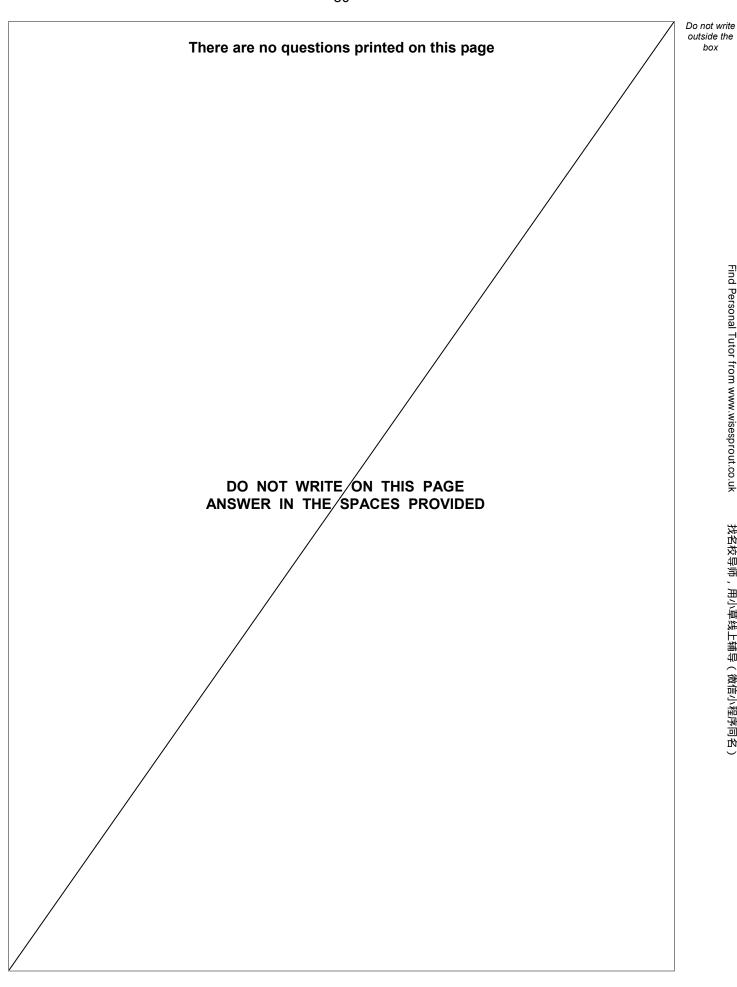

This is the method used.

- 1. Pour 25 cm³ of sodium hydrogencarbonate solution into a polystyrene cup.
- 2. Measure the temperature of the sodium hydrogencarbonate solution.
- 3. Add 0.20 g of citric acid to the polystyrene cup.
- 4. Stir the solution.
- 5. Measure the temperature of the solution.
- 6. Repeat steps 3 to 5 until a total of 2.00 g of citric acid has been added.

The student plotted the results on a graph.

Figure 6 shows the student's graph.

0 9.1	Figure 6 shows an anomalous point when 0.60 g of citric acid was added. This was caused by the student making an error.
	The student correctly:
	measured the mass of the citric acid
	• read the thermometer
	• plotted the point.
	Suggest one reason for the anomalous point. [1 mark]
0 9.2	Explain the shape of the graph in terms of the energy transfers taking place.
	You should use data from Figure 6 in your answer. [3 marks]
0 9.3	A second student repeated the investigation using a metal container instead of the
0 0 . 0	polystyrene cup. The container and the cup were the same size and shape.
	Sketch a line on Figure 6 to show the second student's results until 1.00 g of citric acid had been added. The starting temperature of the solution was the same.
	Explain your answer. [3 marks]



	The student used a solution of citric acid to determine the concentration of of sodium hydroxide by titration.	a solution
0 9.4	The student made 250 cm 3 of a solution of citric acid of concentration 0.050 Calculate the mass of citric acid ($C_6H_8O_7$) required.	00 mol/dm³
	Relative atomic masses (A_r): H = 1 C = 12 O = 16	[3 marks]
	Mass =	g
	This is part of the method the student used for the titration. 1. Measure 25.0 cm³ of the sodium hydroxide solution into a conical flask	
	using a pipette. 2. Add a few drops of indicator to the flask.	
	3. Fill a burette with citric acid solution.	
0 9.5	Describe how the student would complete the titration.	[3 marks]

0 9.6	Give two reasons why a burette is used for the citric acid solution.	[2 marks]
	1	
	2	
0 9.7	13.3 cm³ of 0.0500 mol/dm³ citric acid solution was needed to neutralise 25.0 cm³ of sodium hydroxide solution.	
	The equation for the reaction is:	
	$3NaOH + C_6H_8O_7 \rightarrow C_6H_5O_7Na_3 + 3H_2O$	
	Calculate the concentration of the sodium hydroxide solution in mol/dm ³	[3 marks]
	Concentration =	mol/dm³
	END OF QUESTIONS	

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.
	Copyright information
	For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.
	Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.
	Copyright © 2020 AQA and its licensors. All rights reserved.

