

Please write clearly in block capitals.	
Centre number	Candidate number
Surname	
Forename(s)	
Candidate signature	

GCSE COMBINED SCIENCE: TRILOGY

Foundation Tier Physics Paper 2F

Friday 15 June 2018

Morning

Time allowed: 1 hour 15 minutes

Materials

For this paper you must have:

- a ruler
- a scientific calculator
- the Physics Equations Sheet (enclosed).

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions in the spaces provided.
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

Information

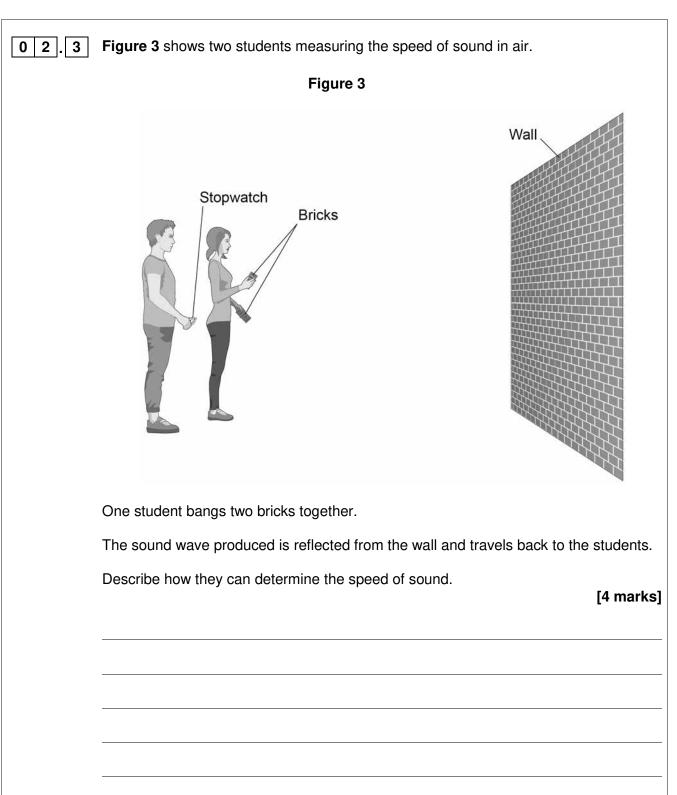
- The maximum mark for this paper is 70.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

For Examiner's Use					
Question	Mark				
1					
2					
3					
4					
5					
6					
7					
8					
TOTAL					

0 1.1	Which of these is a scalar quantity? [1 ma	ark]
	displacement	
	distance	
	force	
	velocity	
0 1.2	A woman cycled along a straight flat road.	
	Figure 1 shows how the woman's velocity changed with time.	
	Figure 1	
	Velocity in m/s Velocity 1 A D E Time in seconds	
	Which part of the graph shows the woman moving at constant velocity?	ark1
	Tick one box.	••]
	BC CD DE	

0 1.3	Which part of the graph shows the woman stationary? Tick one box. BC CD DE	[1 mark]
0 1.4	Between points A and B the woman was accelerating. Use Figure 1 to determine the total time for which she was accelerating.	[1 mark]
	Time =	S
0 1.5	Use Figure 1 to determine her increase in velocity between points A and B	[1 mark]
	Increase in velocity =	m/s
0 1.6	Calculate her acceleration between points $\bf A$ and $\bf B$. Use the equation: $acceleration = \frac{change\ in\ velocity}{time\ taken}$	[2 marks]
	Acceleration =	m/s²

Question 1 continues on the next page


Do not write outside the box

0 1.7	Estimate how a typical cycling speed of 6 m/s compares with a typical walking speed. [1 mark] Tick one box.	
	about twice as fast	
	about four times faster	
	about eight times faster	ſ

0 2	Figure 2 shows a slinky spring used to model a sound wave.					
				Figure 2		
0 2 . 1	Label th	e arrows on	Figure 2			
	Choose	the answers	s from the box			[3 marks]
	[•	
		amplit		compression	frequency	
		r	rarefaction		wavelength	
0 2.2			s a sound wav	/e?		[1 mark]
	Tick one	e box. nagnetic				
	longitud	inal				
	transver	rse				
		Ques	stion 2 contir	nues on the next p	age	

Do not write outside the box

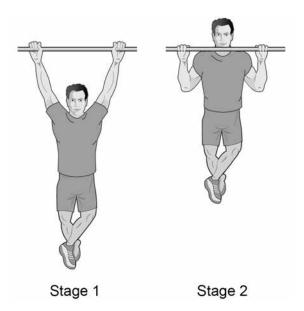


Figure 4 shows a man doing two stages of a pull up. In both diagrams the man is stationary.

Figure 4

0 3. 1 Complete the sentence.

Choose the answer from the box.

[1 mark]

equal to	less than	more than					
In stage 1 the downwards for	orce of the man on the bar is	the					
upwards force of the bar on	the man.						
The man has a mass of 85 k	« g						
Gravitational field strength =	Gravitational field strength = 9.8 N/kg						
Calculate the weight of the r	nan.						
Use the equation:							
weight	t = mass × gravitational field st						
		[2 marks]					
	Weight =	N					
	In stage 1 the downwards for upwards force of the bar on The man has a mass of 85 In Gravitational field strength = Calculate the weight of the rough Use the equation:	In stage 1 the downwards force of the man on the bar is upwards force of the bar on the man. The man has a mass of 85 kg Gravitational field strength = 9.8 N/kg Calculate the weight of the man.					

0 3 . 3	The man raises his body a vertical distance of 0.63 m to go from stage 1 to stage 2	
	Calculate the work done by the man.	
	Use your answer to question 03.2	
	Use the equation:	
	work done = force × distance [2 marks	.]
		_
	Work done =	_
0 3.4	The man was not moving at stage 2	
	How much work is done by the man at stage 2? [1 mark	.]
	Work done =	ļ
0 3.5	A woman uses the bar to do a pull up.	
	The woman has a mass of 62 kg	
	She accelerates at 11 m/s ²	
	Calculate the resultant force on the woman.	
	Use the equation:	
	force = mass × acceleration [2 marks	;]
		_
	Force =N	ı

Turn over for the next question

sesprout.co.uk
找名校评师,用小早线工铺守!
:(微信小程序同名
п,

0 4	Figure 5 shows types of waves within the electromagnetic spectrum.						
	Some of the types of waves are represented by letters.						
			Figu	ıre 5			
Р	microwaves	Q	visible light	R	s	gamma rays	
0 4.1	Which letter shows t electromagnetic spe		tion of ultraviole	et (UV) rad	diation within		
	Tick one box.					[1 mark]	
	Р	Q		R	s		
0 4.2	A special lamp can p	oroduce	UV radiation.				
	Which two statemer	nts desc	ribe the electro	magnetic	waves emitte	ed by a UV lamp? [2 marks]	
	Tick two boxes.					[2 marks]	
	They have a higher frequency than X-rays.						
	They have the same wave speed as visible light.						
	They have a longer wavelength than microwaves.						
	They have a lower fr	equenc	y than gamma	rays.			
	They have a greater wave speed than radio waves.						

找名校导师,用小草线上辅导
(微信小程序同名)

0 4.3	UV radiation is used to treat a vitamin D deficiency.	
	People should not use a UV lamp for long periods of time.	
	State two risks of exposure to high levels of UV radiation. [2 marks]	
	1	
	2	
0 4 . 4	Ionising radiation is used for some medical imaging.	
	Name two types of electromagnetic waves that are used. [2 marks]	
	1	
	2	

Turn over for the next question

Do not write outside the

box

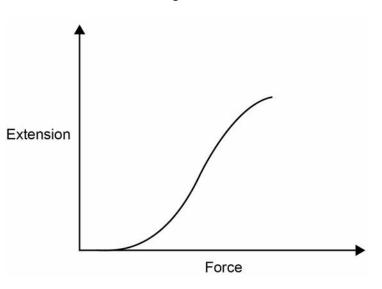
o 5 Figure 6 shows a man using a resistance band when exercising.

The resistance band behaves elastically.

Figure 6

0 5. 1 What happens to the store of elastic potential energy of the resistance band when the band is stretched?

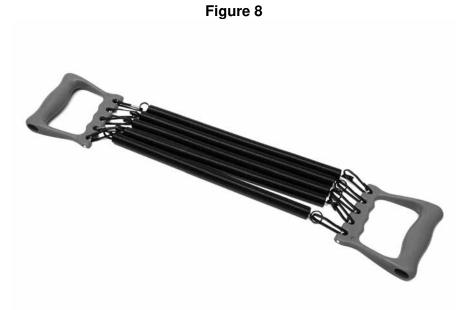
[1 mark]


0 5 2 Explain what happens to the resistance band as it is released.

[2 marks]

Figure 7 shows how the extension of the resistance band changes as the force applied changes. **Figure 7**

Describe the trend shown in the graph.	[2 marks]


Question 5 continues on the next page

Do not write outside the

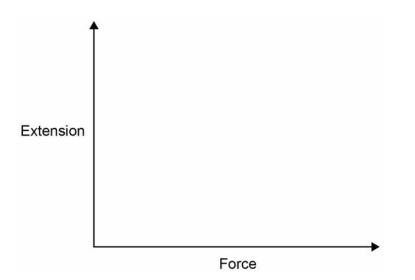

box

Figure 8 shows a chest expander.

0 5 . 4 Sketch a graph on **Figure 9** to show how the extension of a spring in the chest expander changes as the force applied changes.

[2 marks] Figure 9

0 5.5	When a force is applied to a spring, the spring extends by 7.5 cm Write down the equation that links extension, force and spring constant.	[1 mark]
0 5 . 6	Calculate the force applied to the spring.	
	The spring has a spring constant of 1 600 N/m	
	Use your equation from question 05.5	[3 marks]
	Force =	N

Turn over for the next question

Figure 10 shows a lorry.

Figure 10

0 6.1 The brakes of the lorry are in a poor condition.

Thinking distance

What effect will the condition of the brakes have on thinking distance and the braking distance of the lorry?

[2 marks]

Braking distance		

0 6.2 Using a hand-held mobile phone while driving is illegal in the United Kingdom.

Table 1 shows the effect of using a mobile phone on thinking distance.

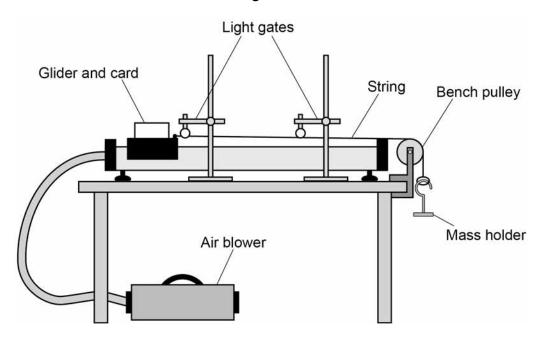
Table 1

	Thinking distance
Not using a mobile phone	19 m
Using a mobile phone with hands-free kit	23 m
Using a hand-held mobile phone	27 m

Explain why driving while using a hand-held mobile phone is more dangerous than using a mobile phone with a hands-free kit.

Use data from Table 1	[4 marks]
-	

Turn over for the next question



A student investigated acceleration using gliders, an air track and light gates.

The air track reduces friction between the glider and the track to zero.

Figure 11 shows the apparatus.

Figure 11

The glider was released from rest and moved along the track.

The mass holder hit the ground before the card passed through the second light gate.

0 7		1	
-----	--	---	--

Which two statements describe the effect this would have on the glider?

[2 marks]

Tick two boxes.

Its acceleration would decrease to zero.	
Its acceleration would increase.	
The resultant force on it would decrease to zero.	
The resultant force on it would increase.	
Its speed would increase.	

0 7.2	The mass holder should not hit the ground before the card passes through the second light gate.	
	Suggest one way that the student could stop this happening. [1 mark]	

Question 7 continues on the next page

The student increased the resultant force acting on the glider by adding more masses to the mass holder.

She calculated the acceleration of the glider for each resultant force.

Each test was done three times.

Table 2 shows the results.

Table 2

Docultant force in N	Acceleration in m/s ²			Maan acceleration in m/a ²
Resultant force in N	Test 1	Test 2	Test 3	Mean acceleration in m/s ²
0.20	1.3	1.2	1.3	1.26667
0.39	2.6	2.5	2.6	2.6
0.59	3.8	3.8	3.9	3.8
0.78	5.1	5.1	5.1	5.1
0.98	6.4	7.2	6.4	6.7

Λ	7	2	The student made two mistakes in the mean acceleration column.
U	/ .		The student made two mistakes in the mean acceleration column.

Identify the mistakes the student made.

Suggest how each mistake can be corrected.

[4 marks]

Mistake			
Correction			
Mistake			
Correction _			
_			

Do not write outside the box

	21
0 7.4	Write a conclusion for this investigation. Use the data in Table 2
	[1 mark]
	Question 7 continues on the next page

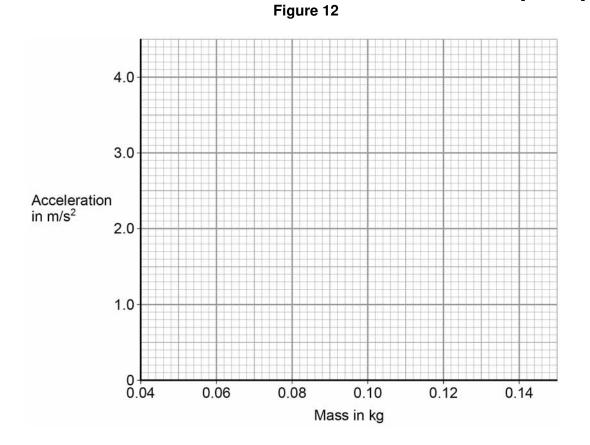
0 7 . 5

The student used a constant resultant force to accelerate the glider.

The student changed the mass of the glider and calculated the new acceleration.

She repeated this for different masses of the glider, keeping the resultant force constant.

The results are shown in Table 3


Table 3

Mass of the glider in kg	Acceleration in m/s ²
0.060	3.5
0.080	2.6
0.10	2.0
0.12	1.7
0.14	1.4

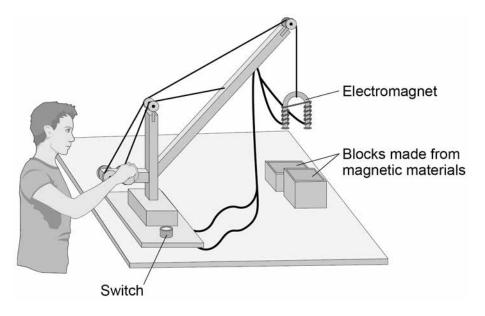
Plot the results on Figure 12

Draw a line of best fit.

[3 marks]

0 7.6	Describe the relationship between mass and acceleration. [1 mark]	Do not write outside the box
		12

Turn over for the next question



0 8	A magnet produces a magnetic field.	
0 8 . 1	Which diagram shows the magnetic field pattern around a bar magnet?	1 mark]
	Tick one box.	i iliai kj
S	N S N	
S	N	
0 8 . 2	Figure 13 shows three metal blocks.	
	The blocks are not labelled.	
	One block is a permanent magnet, one is iron and one is aluminium.	
	Figure 13	
	Describe how another permanent magnet can be used to identify the blocks. [3	marks]

0 8 . 3 Figure 14 shows a toy crane.

The toy crane uses an electromagnet to pick up and move the blocks.

Explain how this electromagnet is able to pick up and move the blocks.

•	- -		[6 marks]

END OF QUESTIONS

Do not write outside the box

Do not write outside the

box

There are no questions printed on this page DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

Copyright information

For confidentiality purposes, from the November 2015 examination series, acknowledgements of third party copyright material will be published in a separate booklet rather than including them on the examination paper or support materials. This booklet is published after each examination series and is available for free download from www.aqa.org.uk after the live examination series.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

Copyright © 2018 AQA and its licensors. All rights reserved.

