

Please write clearly in b	olock capitals.		
Centre number		Candidate number	
Surname _			
Forename(s)			
Candidate signature _			

GCSE COMBINED SCIENCE: TRILOGY

Higher Tier Chemistry Paper 1H

Thursday 16 May 2019 Morning Time allowed: 1 hour 15 minutes

Materials

For this paper you must have:

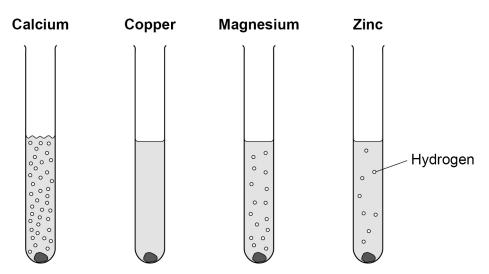
- a ruler
- · a scientific calculator
- the periodic table (enclosed).

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions in the spaces provided.
- Do all rough work in this book. Cross through any work you do not want to be marked
- In all calculations, show clearly how you work out your answer.

For Examiner's Use		
Question	Mark	
1		
2		
3		
4		
5		
6		
TOTAL		

Information


- The maximum mark for this paper is 70.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

This question is about reactions of metals.

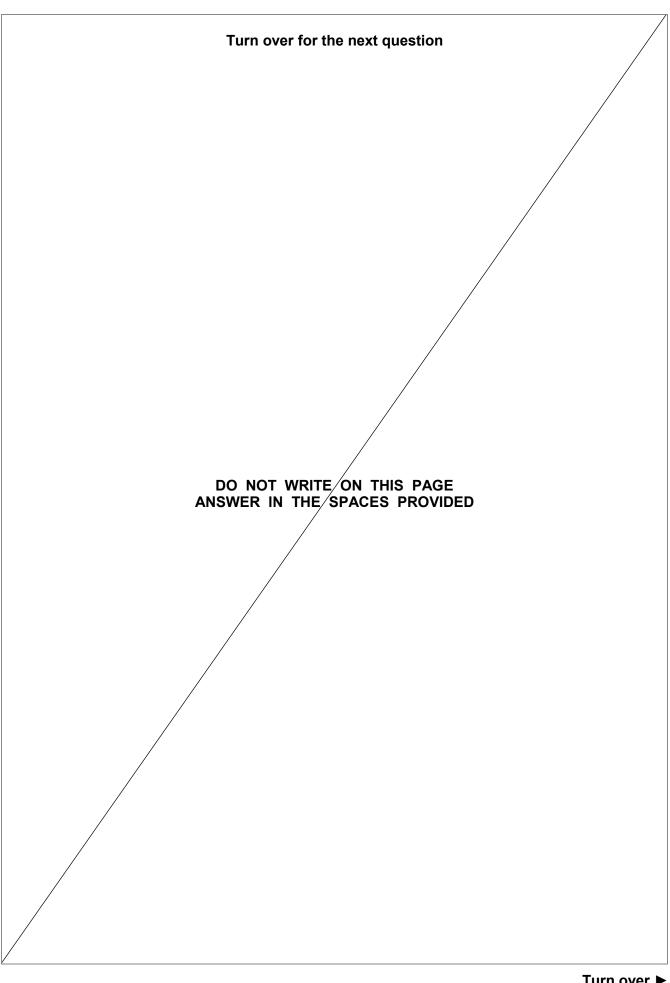
Figure 1 shows what happens when calcium, copper, magnesium and zinc are added to hydrochloric acid.

Figure 1

0 1.1	What is the order of do	ecreasing reactivity of these four metals?	[1 mark]
	Tick (✓) one box.		
	Zn Ca Cu Mg		
	Ca Cu Mg Zn		
	Cu Zn Ca Mg		
	Ca Mg Zn Cu		

	A student wants to make a fair comparison of the reactivity of the metals with hydrochloric acid.	1
0 1.2	Name two variables that must be kept constant.	[2 marks]
	1	
	2	
0 1.3	What is the independent variable in this reaction?	[1 mark]
0 1.4	Predict the reactivity of beryllium compared with magnesium.	
	Give a reason for your answer.	
	Use the periodic table.	[2 marks]
	Reason	
0 1 . 5	A solution of hydrochloric acid contains 3.2 g of hydrogen chloride in 50 cm ³	
	Calculate the concentration of hydrogen chloride in g per dm ³	[3 marks]
	Concentration = g	g per dm ³

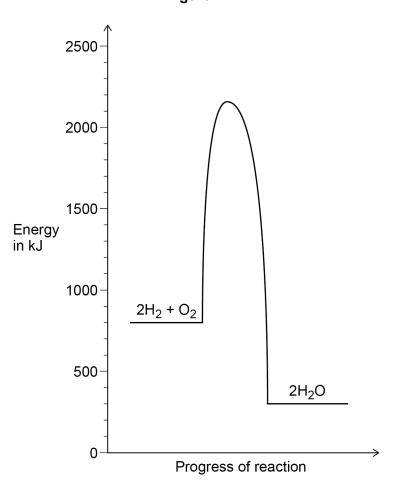
0 2	This question is about salts.	
	Ammonium nitrate solution is produced when ammonia gas reacts with nitric acid.	
0 2.1	Give the state symbol for ammonium nitrate solution.	[1 mark]
0 2.2	What is the formula of nitric acid?	[1 mark]
	Tick (✓) one box.	[i iliai k]
	HCl	
	HNO ₃	
	H ₂ SO ₄	
	NH ₄ OH	
0 2 . 3	Ammonia gas dissolves in water to produce ammonia solution.	
	Ammonia solution contains hydroxide ions, OH ⁻	
	A student adds universal indicator to solutions of nitric acid and ammonia.	
	What colour is observed in each solution?	[2 marks]
	Colour in nitric acid	
	Colour in ammonia solution	


0 2.4	The st	udent gradually added	I nitric acid to ammonia	solution.
		row, A , B , C or D , shountil in excess?	ows the change in pH as	
	Tick (v	() one box.		[1 mark]
		pH of ammonia solution at start	pH after addition of excess nitric acid	
	A	10	7	
	В	2	10	
	С	7	1	
	D	10	2	
0 2.5	Calcula	ate the percentage by	mass of oxygen in amm	nonium nitrate (NH ₄ NO ₃).
			H = 1 N = 14 O	= 16
	Relativ	ve formula mass (M _r):	$NH_4NO_3 = 80$	[3 marks]
		Percent	age by mass of oxygen	=%
		Question 2 c	continues on the next p	page

0 2 . 6	Describe a method to investigate how the temperature changes when different masses of ammonium nitrate are dissolved in water.	
	You do not need to write about safety precautions.	[6 marks]

Do not write outside the

This question is about oxygen.


0 3.

Hydrogen reacts with oxygen.

$$2 H_2 (g) + O_2 (g) \rightarrow 2 H_2 O (g)$$

Figure 2 shows the relative energies of the reactants and products at a certain temperature.

Figure 2

Label the activation energy on Figure 2.

[1 mark]

0 3.2	Determine the overall energy change for the reaction between hydrogen and oxygen shown in Question 03.1		
	Use Figure 2. [2 marks]		
	Energy change = kJ		

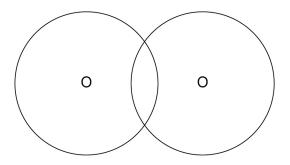

0 3 . **3** Oxygen is in Group 6 of the periodic table.

Figure 3 shows the outer energy levels in one molecule of oxygen (O_2) .

Draw the electrons in the outer energy levels in **Figure 3**.

[2 marks]

Figure 3

Question 3 continues on the next page

0 3 . 4

The equation shows the decomposition of hydrogen peroxide.

$$2 \text{ H-O-O-H} \rightarrow 2 \text{ H-O-H} + \text{ O=O}$$

Table 1 shows the bond energies.

Table 1

Bond	0-0	O=O	О–Н
Bond dissociation energy in kJ per mole	138	496	463

Calculate the overall energy change for the reaction.	[3 marks]
Energy change =	k.I

0 4	This question is about elements in the periodic table.	
0 4.1	What order did scientists use to arrange elements in early periodic tables?	[1 mark]
0 4.2	In the early periodic tables some elements were placed in the wrong groups.	
	Mendeleev overcame this in his periodic table.	
	Give one way Mendeleev did this.	[1 mark]

Question 4 continues on the next page

Do not write outside the box

Table 2 shows the boiling points of fluorine, chlorine and bromine.

Table 2

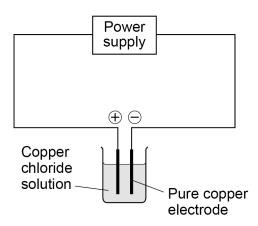
Element	Boiling point in °C
Fluorine	-186
Chlorine	-34
Bromine	+59

0 4.3	Explain why the boiling points in Table 2 are low.	[2 marks]
0 4.4	Explain the trend in the boiling points in Table 2 .	[3 marks]
		_

找名校导师,用小草线上辅导(微信小程序同名)

		Do not write
0 4 . 5	Explain why neon is unreactive.	outside the
	Give the electronic structure of neon in your answer. [2 marks]	
	[2 marks]	
		ב ב ב ב
0 4.6	How many atoms are there in 1 g of argon?	rersonal
	The Avogadro constant is 6.02 × 10 ²³ per mole.	lutor
	Relative atomic mass (A_r) : Ar = 40 [2 marks]	rom ww
		Find Personal Tutor from www.wisesprout.co.uk
		prout.co
		S.C.X
		が
	Number of atoms in 1 g =	发出交

Turn over for the next question


0 5	This question is about electrolysis.	
0 5.1	Some metals are extracted from molten compounds using electrolysis.	
	Why is electrolysis used to extract some metals?	[1 mark
0 5.2	Aluminium is produced by electrolysis of a molten mixture.	
	What two substances does the molten mixture contain?	[2 marks]
	1	
	2	
0 5.3	Copper and chlorine are produced when molten copper chloride is electroly. Complete the half equation for the reaction at each electrode.	sed. [2 marks]
	Half equation at negative electrode $Cu^{2^+} \underline{\hspace{1cm}} \longrightarrow \underline{\hspace{1cm}}$	
	Half equation at positive electrode $2 Cl^- \longrightarrow$	
	201 →	

Do not write outside the

Figure 4 shows the apparatus a student used to electrolyse copper chloride solution.

The student:

- measured the mass of copper deposited on the negative electrode after 60 minutes
- compared the mass deposited with the expected value.

0 5 . 4	Suggest two reasons why the mass deposited was different from the expected value. [2 marks]
	1
	2

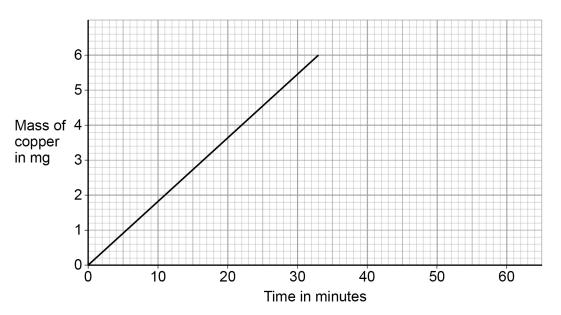
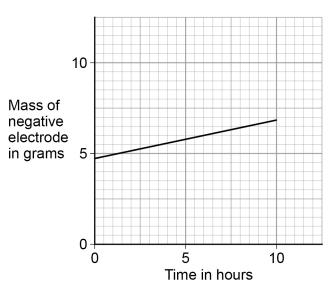

Question 5 continues on the next page

Figure 5 shows the expected mass of copper produced each minute.

Determine the expected mass of copper after 24 hours.

Use Figure 5 .	[3 marks]


Mass =	mg

Silver nitrate solution is electrolysed.

Figure 6 shows the change in mass of the negative electrode over 10 hours.

0 5. 6 Determine the mass of the negative electrode at the start of the experiment.

Use Figure 6.

[1 mark]

0 5. 7 Calculate the gradient of the line in **Figure 6**.

Give the unit.

[3 marks]

Gradient

Unit

Turn over ▶

0 6	This question is about sodium.	
0 6 . 1	Sodium reacts with chlorine.	
	What is the balanced equation for the reaction?	rk1
	Tick (✓) one box.	ıĸj
	Na + Cl → NaCl	
	$Na + Cl_2 \rightarrow NaCl_2$	
	2 Na + $Cl_2 \rightarrow 2 NaCl$	
	2 Na + Cl → Na ₂ Cl	
0 6.2	Hot sodium is put in a gas jar of chlorine.	
	Describe the observations made before, during and after the reaction. [3 mar]	ks]
	Before reaction	
	During reaction	
	After reaction	

0 6.3	Explain why sodium is less reactive than potassium.	[4	marks]

Question 6 continues on the next page

Chlorine reacts with sodium and with hydrogen.

Do not write outside the

compare the off dotale diffe	bonding in sodium chloride and hydrog	gen emone
_	_	

Copyright © 2019 AQA and its licensors. All rights reserved.

0 6 .

4

IB/M/Jun19/8464/C/1H

14