

Please write clearly ir	ı block capitals.	
Centre number	Candidate number	
Surname		
Forename(s)		
Candidate signature	I declare this is my own work.	/

A-level CHEMISTRY

Paper 2 Organic and Physical Chemistry

Time allowed: 2 hours

Materials

For this paper you must have:

- the Periodic Table/Data Booklet, provided as an insert (enclosed)
- a ruler with millimetre measurements
- a scientific calculator, which you are expected to use where appropriate.

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do **not** write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- All working must be shown.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 105.

For Examiner's Use		
Question	Mark	
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
TOTAL		

	Answer all questions in the spaces provided.	
0 1	An acidified solution of butanone reacts with iodine as shown.	
	$CH_3CH_2COCH_3 + I_2 \rightarrow CH_3CH_2COCH_2I + HI$	
0 1 . 1	Draw the displayed formula for CH ₃ CH ₂ COCH ₂ I	
	Give the name of CH ₃ CH ₂ COCH ₂ I	
		[2 marks]
	Displayed formula	
	Name	

0 1 . 2 The rate equation for the reaction is

 $rate = k[CH_3CH_2COCH_3][H^+]$

Table 1 shows the initial concentrations used in an experiment.

Table 1

	CH ₃ CH ₂ COCH ₃	l ₂	H⁺
Initial concentration / mol dm ⁻³	4.35	0.00500	0.825

The initial rate of reaction in this experiment is 1.45×10⁻⁴ mol dm⁻³ s⁻¹

Calculate the value of the rate constant, k, for the reaction and give its units.

[3 marks]

k			
_			
Linita			

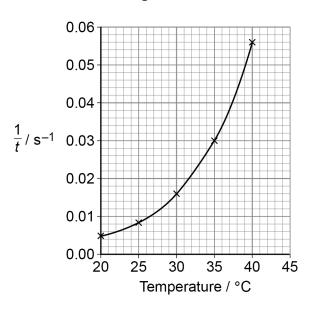
0 1.3 Calculate the initial rate of reaction when all of the initial concentrations are halved.
[1 mark]

Initial rate of reaction _____ mol dm⁻³ s⁻¹

Question 1 continues on the next page

0 1 . 4

An experiment was done to measure the time, t, taken for a solution of iodine to react completely when added to an excess of an acidified solution of butanone.


Suggest an observation used to judge when all the iodine had reacted.

[1 mark]

The experiment was repeated at different temperatures.

Figure 1 shows how $\frac{1}{t}$ varied with temperature for these experiments.

Figure 1

	٦
	-
	Ξ
	C
	_
	т
	à
	4
	ď
	×
	⋍
	Ξ
	Ø.
	=
	_
	Ξ
	ב
	C
	_
	_
	=
	-
	L
	=
	=
	_
	s
	2
	2
	<
	<
	ン
	≥
	=
	v.
	α
	U.
-	C
	=
	\subseteq
	_
	÷
	×
	Ξ
	_
	ᅎ

.wisesprout.co.uk
找名校导师,用小
, 用小草线上辅导 (
(微信小程序同名)

0 1.5	Describe and explain the shape of the graph in Figure 1 . [3 ma	rks]
0 1.6	Deduce the time taken for the reaction at 35 °C [1 m	ark]
	Time	S
	Question 1 continues on the next page	

0 1 . 7

For a different reaction, Table 2 shows the value of the rate constant at different temperatures.

Table 2

Experiment	Temperature / K	Rate constant / s ⁻¹
1	$T_1 = 303$	$k_1 = 1.55 \times 10^{-5}$
2	$T_2 = 333$	$k_2 = 1.70 \times 10^{-4}$

This equation can be used to calculate the activation energy, Ea

$$\ln\left(\frac{k_1}{k_2}\right) = \frac{E_a}{R} \left(\frac{1}{T_2} - \frac{1}{T_1}\right)$$

Calculate the value, in kJ mol^{-1} , of the activation energy, E_a

The gas constant, $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$

[5 marks]

上a	 K٦	J mol	_

Find Personal Tutor from www.wisesprout.co.uk

21

找名校导师,用小草线上辅导(微信小程序同名)

0 1.8	Name and outline the dilute acid.	mechanism for the reaction of butanone with KCN followed by
		[5 marks]
	Name of mechanism	

Outline of mechanism

Turn over for the next question

0 2

Tetrafluoroethene is made from chlorodifluoromethane in this reversible reaction.

$$2 \text{ CHClF}_2(g) \Rightarrow C_2 F_4(g) + 2 \text{ HCl}(g)$$

 $\Delta H = +128 \text{ kJ mol}^{-1}$

A 2.00 mol sample of $CHClF_2$ is placed in a container of volume 23.2 dm³ and heated. When equilibrium is reached, the mixture contains 0.270 mol of $CHClF_2$

0 2 . 1

Calculate the amount, in moles, of C₂F₄ and of HCl in the equilibrium mixture.

[2 marks]

Amount of C ₂ F ₄	mo
7 tilloulit of O21 4	1110

Amount of HCl mol

 $\boxed{\mathbf{0} \ \mathbf{2}}$. Give an expression for K_c for this equilibrium.

[1 mark]

K_c

0 2.3	Calculate a value for K_c
	Give its units. [3 marks]
	[5 marks]
	K _c Units
0 2.4	State and explain the effect of using a higher temperature on the equilibrium yield of tetrafluoroethene.
	[3 marks]
	Effect on yield
	Explanation
	Question 2 continues on the next page

Do not write outside the box

Find Personal Tutor from www.wisesprout.co.uk

Į,	
4	
H	1
2	
五少十%十	1
4	
ž	į
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
•	

0 2 . 5	Chemists provided evidence that was used to support a ban on the use of chlorodifluoromethane as a refrigerant.	
	Many refrigerators now use pentane as a refrigerant.	
	State the environmental problem that chlorodifluoromethane can cause.	
	Give one reason why pentane does not cause this problem.	[2 marks]
	Environmental problem	
	Reason why pentane does not cause this problem	

0 3	This question is about 2-methylbut-1-ene.
0 3.1	Name the mechanism for the reaction of 2-methylbut-1-ene with concentrated sulfuric acid.
	Outline the mechanism for this reaction to form the major product. [5 marks]
	Name of mechanism
	Outline of mechanism to form major product
	Outline of medianism to form major product
0 3 2	Draw the structure of the minor product formed in the reaction in Question 03.1
	Explain why this is the minor product.
	[3 marks]
	Structure of minor product
	Explanation

0 3. 3 Draw the skeletal formula of a functional group isomer of 2-methylbut-1-ene.

П
=
nd
_
U
Φ
\mathbf{S}
ö
⋾
ersonal
_
ᅼ
utor
ದ
۲
-
$\overline{}$
9
from
٤
€
≶
~
٤
22.
es
ੲ
5
~
≒
ò
ö
Ξ
듲

ww.wisesprout.co.uk
找名校导师,
,用小草线上辅导
台舞引

[1 mark]

0 3.4 2-methylbut-1-ene can form a polymer.

State the type of polymerisation.

Draw the repeating unit for the polymer formed.

[2 marks]

Type of polymerisation

Repeating unit

11

0 4	Proteins are polymers made from amino acids. Part of the structure of a protein is shown.	
	-Cys-Ser-Asp-Phe-	
	Each amino acid in the protein is shown using the first three letters of its name	ne.
0 4.1	Identify the type of protein structure shown.	[1 mark]
	Tick (✓) one box.	
	Primary	
	Secondary	
	Tertiary	
0 4.2	Draw a structure for the –Cys–Ser– section of the protein. Use the Data Booklet to help you answer this question.	[2 marks]

Question 4 continues on the next page

Name the other substance formed when two amino acids react together to form part of a protein chain.

[1 mark]

The general structure of an amino acid is shown.

R represents a group that varies between different amino acids.

R groups can interact and contribute to protein structure.

O 4 . 4 Explain why the strength of the interaction between two cysteine R groups differs from the strength of the interaction between a serine R group and an aspartic acid R group.

Use the Data Booklet to help you answer this question.

[4 marks]	

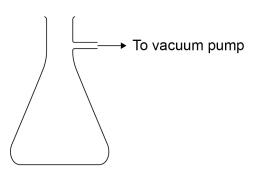
0 4. **5** Deduce the type of interaction that occurs between a lysine R group and an aspartic acid R group.

[1 mark]

9

0 5	This question is about the preparation of hexan-2-ol. Hexan-2-ol does not mix with water and has a boiling point of 140 °C		
	Hexan-2-ol can be prepared from hex-1-ene using this method.		
	Measure out 1	1.0 cm ³ of hex-1-ene into a boiling tube in an ice bath.	
	Carefully add 5	5 cm ³ of concentrated phosphoric acid to the hex-1-ene.	
		s add 10 cm ³ of distilled water to the mixture and transfer the ntents to a separating funnel.	
	Shake the mix	ture and allow it to settle.	
	Discard the lov	ver (aqueous) layer.	
	Add a fresh 10	cm³ sample of distilled water and repeat steps d and e .	
	Transfer the re	emaining liquid to a beaker.	
	Add 2 g of anh	ydrous magnesium sulfate and allow to stand for 5 minutes.	
	Filter the mixtu	re under reduced pressure.	
	Distil the filtrate	e and collect the distillate that boils in the range 130–160 °C	
0 5.1	•	vear eye protection and a lab coat when completing this experi ason, one other appropriate safety precaution for this experim [2 n	
	Precaution		
	Reason _		
0 5.2	iive a reason for	adding the distilled water in steps c and f . [1	mark]
0 5 . 3	iive a reason for	adding anhydrous magnesium sulfate in step h . [1	mark]

Question 5 continues on the next page



0 5 . 4

Complete and label the diagram of the apparatus used to filter the mixture under reduced pressure in step i.

[2 marks]

5 Identify the most likely organic impurity, other than hex-1-ene, in the distillate collected in step j.

Suggest one reason why it could be difficult to remove this impurity.

[2 marks]

Impurity Reason

ww.wisesprout.co.uk
找名校导师,用小草线上辅导(微信小程序同名)

0 5.6	Calculate the mass, in g, of hexan-2-ol formed from 11.0 cm^3 of hex-1-ene if the yield is 31.0%
	Give your answer to 1 decimal place.
	Density of hex-1-ene = 0.678 g cm ⁻³ [4 marks]

Mass	g

Turn over ▶

12

0 6

This question is about compound X with the empirical formula C₂H₄O

Figure 2 shows the infrared spectrum of X.

Figure 3 shows the ¹³C NMR spectrum of X.

The ¹H NMR spectrum of **X** shows four peaks with different chemical shift values. **Table 3** gives data for these peaks.

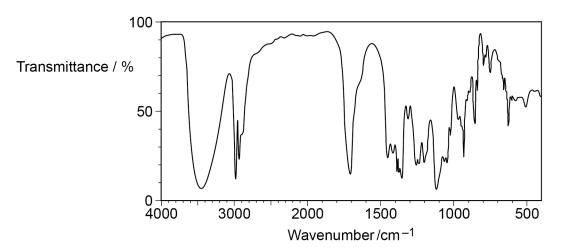


Figure 3

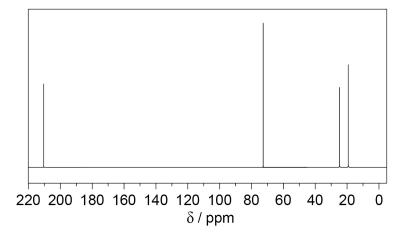


Table 3

Chemical shift δ / ppm	3.9	3.7	2.1	1.2
Splitting pattern	quartet	singlet	singlet	doublet
Integration value	1	1	3	3

the structure of cor	npound A.		
-			
-			
-			
_			
_			

	找 名校导师,用小阜线上辅导(微信小程序同名
	此)

Do not write outside the box
box
_
nd
Perso
onal I
Find Personal Tutor from www.wisesprout.co.uk
from
v.wis
espro
找名校导师,用小草线上辅导(微信小程序回名)
Xi
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
微信
 此
6

This question is about esters.

Figure 4 shows an incomplete mechanism for the reaction of an ester with aqueous sodium hydroxide.

Figure 4

step 3

0 7.1 Add three curly arrows to complete the mechanism in Figure 4.

[3 marks]

0 7. 2 Name the type of reaction shown in Figure 4.

[1 mark]

0 7. Deduce the role of the CH₃O⁻ ion in step 3 shown in Figure 4.

[1 mark]

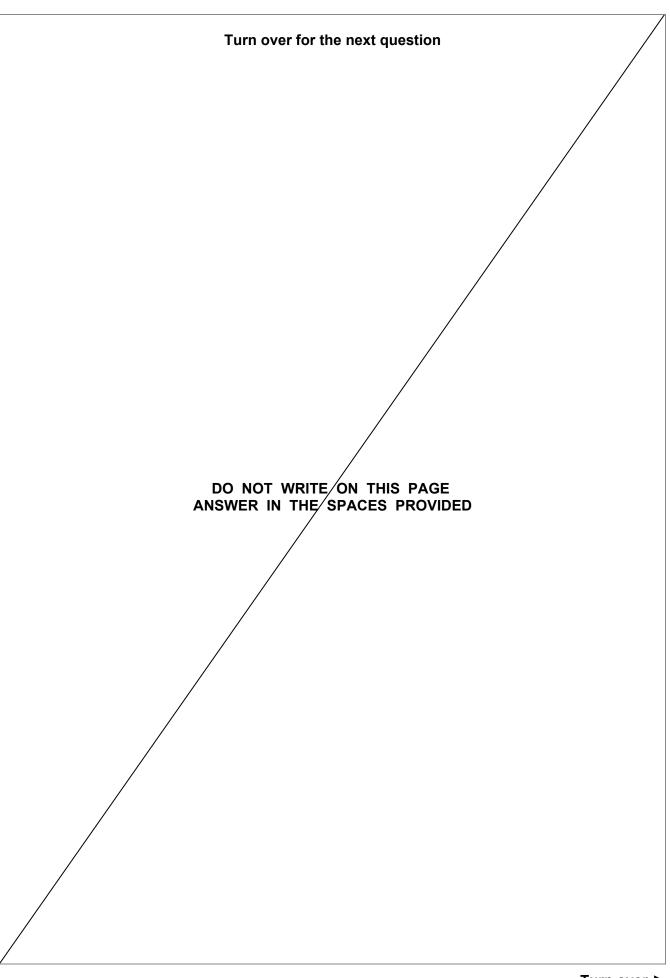
0 7. 4 A triester in vegetable oil reacts with sodium hydroxide in a similar way.

Give a use for a product of this reaction.

[1 mark]

6

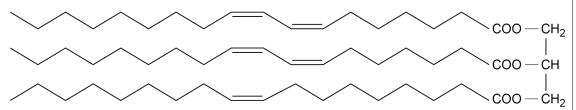
2 1


找名校导师
-
用小草
草线上轴
. 4 年 (
邹
微信/
$\overline{}$
뢢
1/1
四位

0 8	Benzene reacts with methanoyl chloride (HCOCI) in the presence of a catalyst.
0 8.1	Give an equation for the overall reaction when benzene reacts with methanoyl chloride.
	Name the organic product. [2 marks]
	Equation
	Name
0 8.2	Identify the catalyst needed in this reaction.
	Give an equation to show how the catalyst is used to form the electrophile, [HCO] ⁺ [2 marks]
	Catalyst
	Equation
0 8.3	Outline the mechanism for the reaction of benzene with the electrophile, [HCO] ⁺ [3 marks]

7

Do not write outside the


0 9

This question is about olive oil.

A sample of olive oil is mainly the unsaturated fat **Y** mixed with a small amount of inert impurity.

The structure of **Y** in the olive oil is shown.

Y has the molecular formula $C_{57}H_{100}O_6$ ($M_r = 880$).

The amount of \mathbf{Y} is found by measuring how much bromine water is decolourised by a sample of oil, using this method.

- Transfer a weighed sample of oil to a 250 cm³ volumetric flask and make up to the mark with an inert organic solvent.
- Titrate 25.0 cm³ samples of the olive oil solution with 0.025 mol dm⁻³ Br₂(aq).

0 9 . 1

A suitable target titre for the titration is 30.0 cm³ of 0.025 mol dm⁻³ Br₂(aq).

Justify why a much smaller target titre would **not** be appropriate.

Calculate the amount, in moles, of bromine in the target titre.

[2 marks]

Justification					

Amount of bromine mol

0 9 . 2	Calculate a suitable mass of olive oil to transfer to the volumetric flask using your
	answer to Question 09.1 and the structure of Y .
	Assume that the olive oil contains 85% of Y by mass.

(If you were unable to calculate the amount of bromine in the target titre, you should assume it is 6.25×10^{-4} mol. This is **not** the correct amount.)

[5 marks]

Mass of olive oil _____ g

Question 9 continues on the next page

The olive oil solution can be prepared using this method.

- Place a weighing bottle on a balance and record the mass, in g, to 2 decimal places.
- Add olive oil to the weighing bottle until a suitable mass has been added.
- · Record the mass of the weighing bottle and olive oil.
- Pour the olive oil into a 250 cm³ volumetric flask.
- Add organic solvent to the volumetric flask until it is made up to the mark.
- Place a stopper in the flask and invert the flask several times.

0 9 . 3	Suggest an extra step to ensure that the mass of olive oil in the solution is reaccurately.	corded
	Justify your suggestion.	[2 marks]
	Extra step	
	Justification	
0 9.4	State the reason for inverting the flask several times.	[1 mark]

找名校导师,用小草线上辅导(微信小程序同名)

0 9 . 5

A sample of the olive oil was dissolved in methanol and placed in a mass spectrometer. The sample was ionised using electrospray ionisation. Each molecule gained a hydrogen ion (H⁺) during ionisation.

The spectrum showed a peak for an ion with $\frac{m}{z} = 345$ formed from an impurity in the olive oil.

The ion with $\frac{m}{z}$ = 345 was formed from a compound with the empirical formula C₅H₁₀O

Deduce the molecular formula of this compound.

[2 marks]

Show your working.

Molecular formula

Turn over for the next question

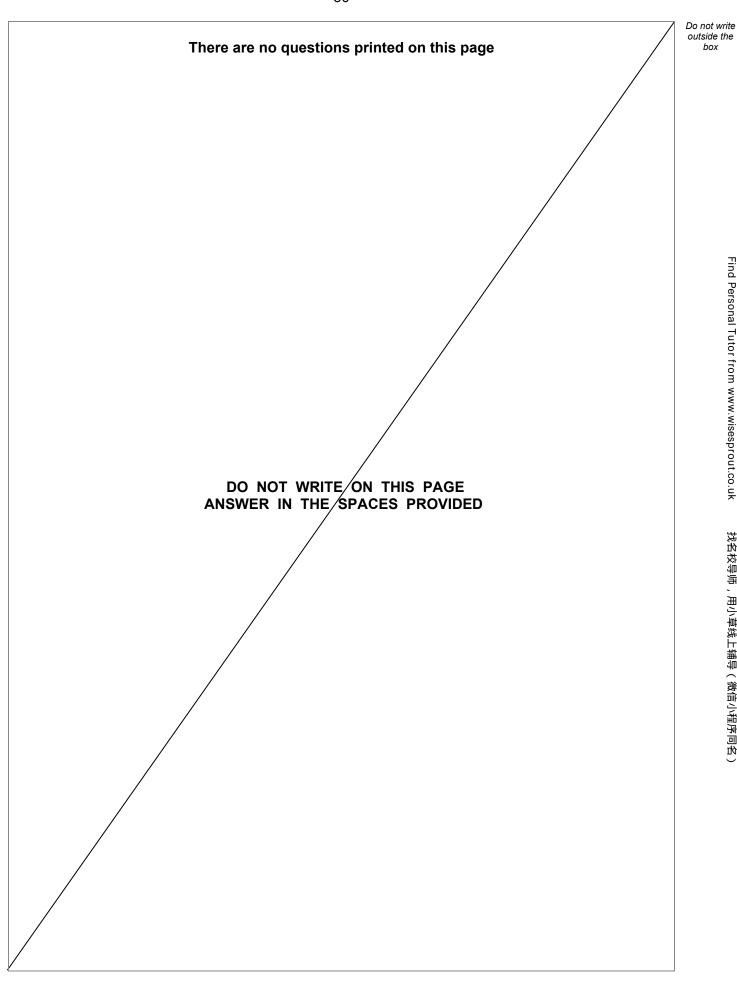
1 0 This question is about the reaction scheme shown.

1	0	. 1	State the reagents needed for step 1 and the reagents needed for step 2
	_	- 1	The state with the state with the state of t

[3 marks]

step 1			
step 2			

1	0	. 2	Give the name of the mechanism for the reaction in step 3


[1 mark]

1 0 . 3	Name the reagent for step 4 .		Do not write outside the box
	State a necessary condition for step 4 .	[2 marks]	
	Reagent		
	Condition		
1 0 . 4	Amine A is formed in step 2 and amine B is formed in step 5 .		_
	Explain why the yield of B in step 5 is less than the yield of A in step 2 .	[2 marks]	Find Personal Tutor from www.wisesprout.co.uk
			l Tutor fron
			n www.wise
			esprout.co.
1 0 . 5	Explain why amine B is a stronger base than amine A .	[2 marks]	
			找名校导唱,
			10 10
			10 第
			(微信)

END OF QUESTIONS

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

number	Additional page, if required. Write the question numbers in the left-hand margin.
**	
(4)	
181	
181	
167	
181	
181	
	Copyright information
	For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.
	Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.
	Copyright © 2022 AQA and its licensors. All rights reserved.

