

Tuesday 16 May 2023 – Morning AS Level Chemistry A

H032/01 Breadth in chemistry

Time allowed: 1 hour 30 minutes

You must have:

• the Data Sheet for Chemistry A

You can use:

- · a scientific or graphical calculator
- an HB pencil

Please write cle	arly in	black	k ink.	Do no	ot writ	e in the barcodes.		
Centre number						Candidate number		
First name(s)								
Last name								

INSTRUCTIONS

- Use black ink. You can use an HB pencil, but only for graphs and diagrams.
- Write your answer to each question in the space provided. If you need extra space use the lined pages at the end of this booklet. The question numbers must be clearly shown.
- Answer all the questions.
- Where appropriate, your answer should be supported with working. Marks might be given for using a correct method, even if your answer is wrong.

INFORMATION

- The total mark for this paper is 70.
- The marks for each question are shown in brackets [].
- This document has 24 pages.

ADVICE

· Read each question carefully before you start your answer.

© OCR 2023 [601/5256/4] DC (RW/CT) 315826/4

OCR is an exempt Charity

Turn over

SECTION A

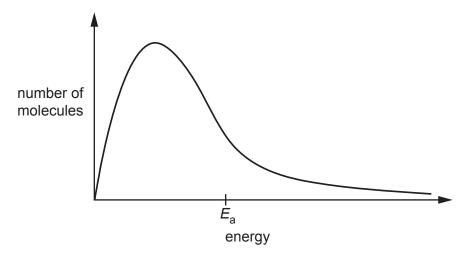
You should spend a maximum of 25 minutes on this section.

Write your answer to each question in the box provided.

1	Wh	ich statement explains the trend in boiling points down the halogens group?	
	Α	Covalent bonds become stronger.	
	В	Induced dipole-dipole interactions (London forces) become stronger.	
	С	lonic bonds become stronger.	
	D	Permanent dipole–dipole interactions become stronger.	
	You	ur answer	[1]
2	A h	ydrocarbon contains 85.71% carbon by mass.	
	Wh	at is the empirical formula of the hydrocarbon?	
	Α	CH	
	В	CH ₂	
	С	CH ₄	
	D	C_2H_4	
	You	ır answer	[1]
3		drogen can be prepared industrially by the reaction of methane with steam. equation is shown below.	
	CH	$_{4}(g) + 2H_{2}O(g) \rightarrow 4H_{2}(g) + CO_{2}(g)$	
	Wh	at is the atom economy of hydrogen for this process?	
	Α	3.8%	
	В	4.3%	
	С	15.4%	
	D	17.4%	
©	You	ar answer	[1]

How m	any p-orbita	als are occupi	ed by electi	ons in a su	ılfur atom?			
A 2								
B 4								
C 6								
D 10								
Your ar	nswer							[1]
Which	substance l	nas the lowes	t oxidation ı	number for	sulfur?			
A Na	a ₂ SO ₄							
B S ₈								
D SC	D_2							
Succes	ssive ionisa	tion energies,	in kJ mol ^{–1} ,	of an elem	nent in Peri	od 3 of the	periodic ta	[1] ble are
1st	2nd	3rd	4th	5th	6th	7th	8th	9th
578	1817	2745	11578	14831	18378	23296	27460	31862
A Na B Mg	1 ₂ 0 g0	a of the oxide	of the Perio	od 3 eleme	nt?			
	A 2 B 4 C 6 D 10 Your ar Which : A Na B S ₈ C SF D SC Your ar Succession 1st 578 What is A Na B Mg	A 2 B 4 C 6 D 10 Your answer Which substance is A Na ₂ SO ₄ B S ₈ C SF ₂ D SO ₂ Your answer Successive ionisatishown below. 1st 2nd 578 1817 What is the formula is	A 2 B 4 C 6 D 10 Your answer Which substance has the lowes A Na ₂ SO ₄ B S ₈ C SF ₂ D SO ₂ Your answer Successive ionisation energies, shown below. 1st 2nd 3rd 3rd 578 1817 2745 What is the formula of the oxide A Na ₂ O B MgO	A 2 B 4 C 6 D 10 Your answer Which substance has the lowest oxidation of the period of the Period A Na ₂ O B Na ₂ O B Na ₂ O B Na ₂ O B MgO	A 2 B 4 C 6 D 10 Your answer Which substance has the lowest oxidation number for A Na ₂ SO ₄ B S ₈ C SF ₂ D SO ₂ Your answer Successive ionisation energies, in kJ mol ⁻¹ , of an elemshown below. 1st 2nd 3rd 4th 5th 578 1817 2745 11578 14831 What is the formula of the oxide of the Period 3 element A Na ₂ O B MgO	A 2 B 4 C 6 D 10 Your answer Which substance has the lowest oxidation number for sulfur? A Na ₂ SO ₄ B S ₈ C SF ₂ D SO ₂ Your answer Successive ionisation energies, in kJ mol ⁻¹ , of an element in Perishown below. 1st 2nd 3rd 4th 5th 6th 578 1817 2745 11578 14831 18378 What is the formula of the oxide of the Period 3 element? A Na ₂ O B MgO	B 4 C 6 D 10 Your answer Which substance has the lowest oxidation number for sulfur? A Na ₂ SO ₄ B S ₈ C SF ₂ D SO ₂ Your answer Successive ionisation energies, in kJ mol ⁻¹ , of an element in Period 3 of the shown below. 1st 2nd 3rd 4th 5th 6th 7th 578 1817 2745 11578 14831 18378 23296 What is the formula of the oxide of the Period 3 element? A Na ₂ O B MgO	A 2 B 4 C 6 D 10 Your answer Which substance has the lowest oxidation number for sulfur? A Na ₂ SO ₄ B S ₈ C SF ₂ D SO ₂ Your answer Successive ionisation energies, in kJmol ⁻¹ , of an element in Period 3 of the periodic ta shown below. 1st 2nd 3rd 4th 5th 6th 7th 8th 578 1817 2745 11578 14831 18378 23296 27460 What is the formula of the oxide of the Period 3 element? A Na ₂ O B MgO

7	Hov	v many oxygen atoms are in 120.2g of SiO ₂ ?	
	A	3.01×10^{23}	
	В	1.20×10^{24}	
	С	2.41×10^{24}	
	D	3.61×10^{24}	
	You	r answer	[1]
8	Ма	gnesium nitrate, Mg(NO ₃) ₂ , decomposes when heated:	
	Mg($(NO_3)_2(s) \rightarrow MgO(s) + 2NO_2(g) + \frac{1}{2}O_2(g)$	
	0.00	$0250\mathrm{mol}$ of $\mathrm{Mg(NO_3)_2}$ is decomposed.	
	Wh	at is the volume of gas produced, measured at RTP?	
	Α	$30\mathrm{cm}^3$	
	В	60 cm ³	
	С	120 cm ³	
	D	150 cm ³	
	You	r answer	[1]
9	Zind	c reacts with aqueous silver nitrate, as shown in the equation:	
	Zn(s) + $2AgNO_3(aq) \rightarrow 2Ag(s) + Zn(NO_3)_2(aq)$	
	0.10	g of zinc is added to 15 cm ³ of 0.25 mol dm ⁻³ aqueous silver nitrate.	
	Wh	at is the mass of silver metal that would be formed?	
	A	0.16g	
	В	0.20g	
	С	0.33g	
	D	0.40 g	

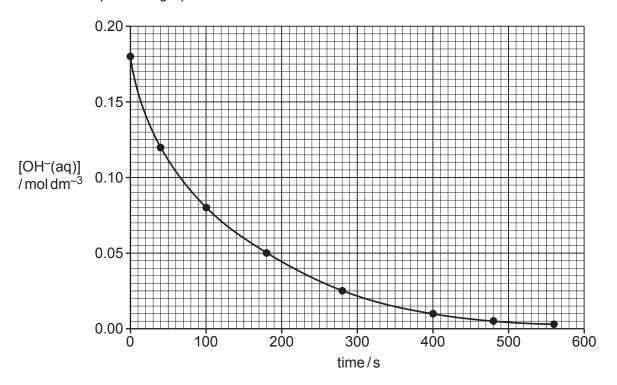

© OCR 2023

Your answer

[1]

10		00 cm ³ of 18.0 mol dm ⁻³ concentrated hydrochloric acid is diluted with water to prepare cm ³ of dilute hydrochloric acid.	
	Wha	at is the concentration, in mol dm ⁻³ , of the dilute hydrochloric acid?	
	Α	0.0675	
	В	0.270	
	С	0.300	
	D	1.08	
	You	r answer	[1]
11	The	standard enthalpy change of formation of water is –286 kJ mol ⁻¹ .	
	Whi	ch statement or equation is correct?	
	Α	$H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(I)$ $\Delta H^{\Theta} = -143 \text{ kJ mol}^{-1}$	
	В	$2H_2(g) + O_2(g) \rightarrow 2H_2O(I)$ $\Delta H^{\Theta} = -286 \text{ kJ mol}^{-1}$	
	С	The O–H bond enthalpy is –143 kJ mol ⁻¹ .	
	D	The standard enthalpy change of combustion of hydrogen is –286 kJ mol ⁻¹ .	
	You	r answer	[1]
12	Whi	ch statement about energy changes is correct?	
	Α	Combustion of an alkane is endothermic.	
	В	In an exothermic reaction, more energy is needed to break bonds than is given out when bonds are made.	
	С	The activation energy is a negative value.	
	D	The enthalpy change for the condensation of a gas to a liquid is a negative value.	
	You	r answer	[1]

13 The Boltzmann distribution showing the activation energy, $E_{\rm a}$, for an uncatalysed reaction is shown below.

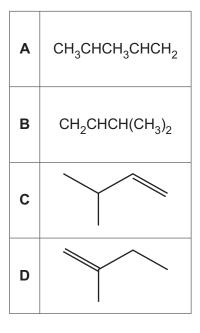

What is the difference for the catalysed reaction?

- **A** The activation energy shifts to the left.
- **B** The activation energy shifts to the right.
- **C** The curve flattens.
- **D** The curve shifts to the right.

[1]

14 A student measures how the OH⁻ concentration changes over time for a reaction.

The student plots the graph below.



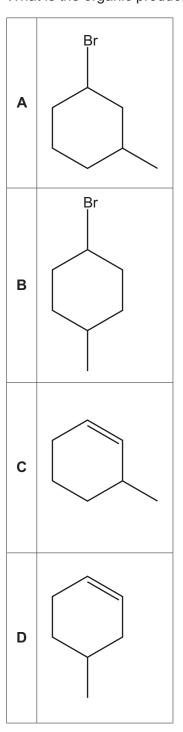
What is the rate of reaction, in $mol dm^{-3} s^{-1}$, at 200 s?

- **A** 2.2×10^{-4}
- **B** 2.8×10^{-4}
- **C** 1.8×10^{-3}
- **D** 4.4×10^{-2}

Your answer [1]

15 Which formula does not represent 3-methylbut-1-ene?

Your answer	[1]
	L


16 How many structural isomers have the molecular formula C_4H_9Cl ?

- **A** 2
- **B** 3
- **C** 4
- **D** 5

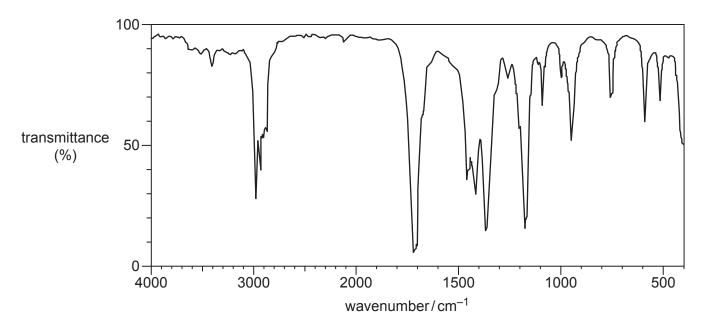
Your answer [1]

17 3-Methylcyclohexanol is reacted with NaBr and $\rm H_2SO_4$.

What is the organic product?

Your answer [1]

18 A student has planned the two-stage synthesis shown below.


$$H_3C$$
 H_3C
 H_3C

Which compound could be the intermediate for this synthesis?

Α	H H H ₃ C
В	$\begin{array}{c c} & Br & H \\ & & \\ & \\ H_3C \overset{\longleftarrow}{\longleftarrow} C \overset{\longleftarrow}{\longleftarrow} H \\ & & \\ & CH_3 & H \end{array}$
С	ОН Н
D	Br Br H ₃ C—C—C—H CH ₃ H

Your answer [1]

19 An organic compound produces the infrared spectrum below.

Which compound could have produced this IR spectrum?

- A CH₃CH₂CH=CH₂
- B CH₃CHOHCH₂CH₃
- C CH₃CH₂COCH₃
- D (CH₃)₂CHCOOH

Your answer	[1]
Your answer	[1

20 Pentan-2-ol and pentan-3-ol are structural isomers with the molecular formula $C_5H_{12}O$ and $M_r = 88$.

The isomers can be distinguished from the fragment ions in their mass spectra.

Which fragment ion would you expect to be present in only one of these isomers?

- **A** m/z = 29
- **B** m/z = 45
- **C** m/z = 59
- **D** m/z = 73

Your answer [1]

12

SECTION B

(a)	NF ₃	and BF ₃ contain	covalent bonds.		
	(i)	What is meant by	/ a covalent bond?		F4°
	(ii)	Draw 'dot-and-cr	oss' diagrams for NF ₃ an	nd BF ₃ .	[1]
		Show outer elect	rons only.		
			NF ₃	BF ₃	
			NF ₃	BF ₃	[2]
(b)	Mol	ecules of NF ₃ and	NF ₃ BF ₃ have different shap	-	[2]
	Mol·		BF ₃ have different shap	-	[2]
			BF ₃ have different shap	es and bond angles.	[2]
			BF ₃ have different shap	es and bond angles. angles in, NF ₃ and BF ₃ molecules.	[2]
		Predict the difference	BF ₃ have different shap	es and bond angles. angles in, NF ₃ and BF ₃ molecules.	[2]
		Predict the difference NF ₃	BF ₃ have different shap	es and bond angles. angles in, NF ₃ and BF ₃ molecules.	[2]
		NF ₃ BF ₃	BF ₃ have different shap ent shapes of, and bond Bond angle	es and bond angles. angles in, NF ₃ and BF ₃ molecules.	
	(i)	NF ₃ BF ₃	BF ₃ have different shap ent shapes of, and bond Bond angle	es and bond angles. angles in, NF ₃ and BF ₃ molecules. Name of shape	
	(i)	NF ₃ BF ₃	BF ₃ have different shap ent shapes of, and bond Bond angle	es and bond angles. angles in, NF ₃ and BF ₃ molecules. Name of shape	
	(i)	NF ₃ BF ₃	BF ₃ have different shapent shapes of, and bond Bond angle and BF ₃ molecules have	es and bond angles. angles in, NF ₃ and BF ₃ molecules. Name of shape	[2]
	(i)	NF ₃ BF ₃ Explain why NF ₃	BF ₃ have different shapent shapes of, and bond Bond angle and BF ₃ molecules have	es and bond angles. angles in, NF ₃ and BF ₃ molecules. Name of shape e different shapes and bond angles.	[2]
	(i)	NF ₃ BF ₃ Explain why NF ₃	BF ₃ have different shapent shapes of, and bond Bond angle and BF ₃ molecules have	es and bond angles. angles in, NF ₃ and BF ₃ molecules. Name of shape e different shapes and bond angles.	[2]

22	2 This question is about reactions involving acids.						
	(a)	Hydrochloric acid	and nitric acid are classified as strong acids.				
		What is meant by	a strong acid?				
				[1]			
	(b)	Write equations for	or the reactions below. State symbols are not required.				
		(i) The reaction	of copper(II) oxide with dilute hydrochloric acid.				
				[1]			
		(ii) The reaction	of ammonium carbonate with dilute nitric acid.				
				[2]			

- (c) A student carries out an investigation to identify an unknown Group 1 metal M.
 - The student reacts 2.62g of the Group 1 metal, M, with water.
 A solution of the alkali, MOH(aq), is formed.
 - The student makes this solution of **M**OH(aq) up to 250.0 cm³ with water.
 - The student pipettes 25.0 cm³ of this **M**OH(aq) solution into a conical flask.
 - The student titrates this $25.0 \, \text{cm}^3$ volume of **M**OH(aq) with $0.165 \, \text{mol dm}^{-3} \, \text{H}_2 \, \text{SO}_4(\text{aq})$.

The equation is shown below.

$$2MOH(aq) + H2SO4(aq) \rightarrow M2SO4(aq) + 2H2O(I)$$

(i) Name the type of flask that the student should use to make up the 250.0 cm³ solution of MOH(aq).

...... flask [1]

(ii) The student takes burette readings to the nearest 0.05 cm³.

The student's readings are shown in the table.

The rough titre has been omitted.

Complete the table below.

Final reading /cm ³	20.25	40.85	25.85
Initial reading /cm ³	0.00	20.25	5.50
Titre/cm ³			

[1]

(iii) Calculate the mean titre of $\rm H_2SO_4$, to the nearest 0.05 cm 3 , that the student should use to analyse the results.

mean titre =cm³ [1]

(iv)	Calculate the amount, in mol, of ${\bf M}{\rm OH}$ in 25.0 cm 3 of solution and determine the identity of the Group 1 metal ${\bf M}.$
	metal M =[4]

- 23 This question is about enthalpy changes.
 - (a) In a petrol engine, alkanes undergo combustion.
 - (i) Heptane is one of the alkanes in petrol.

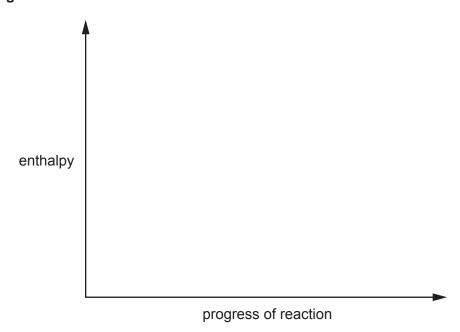
Write the equation for the complete combustion of heptane.

State symbols are **not** required.

[2]

(ii) In a petrol engine, polluting gases such as CO and NO are formed. These are mostly removed before being emitted from the exhaust.

The equation for the removal of CO and NO is shown below.


$$2CO(g) + 2NO(g) \rightarrow 2CO_2(g) + N_2(g)$$
 $\Delta H = -746 \text{ kJ mol}^{-1}$

Complete the enthalpy profile diagram in Fig. 23.1 for this reaction.

On your diagram:

- Label the enthalpy change of reaction, ΔH .
- Include the formulae of the reactants and products.
- Label the activation energy, E_a.

Fig. 23.1

[2]

	(iii)	CO and NO are	removed by use of	a catalyst.			
		Explain the role	of the catalyst				
		Explain the role	or are catalyon				
		Refer to your enthalpy profile diagram in Fig. 23.1 in your answer.					
				[2]			
(b)	Iron(III) oxide reacts with carbon monoxide as shown:						
	Fe ₂	$Fe_2O_3(s) + 3CO(g) \rightarrow 2Fe(s) + 3CO_2(g)$ $\Delta H = -25 \text{ kJ mol}^{-1}$					
	Sta	andard enthalpy changes of formation, $\Delta_{\mathrm{f}}H^{\mathrm{e}}$, are given in the table.					
		Substance	Δ _f H ^e /kJ mol ^{−1}				
		Fe ₂ O ₃ (s)	-824				
		CO(g)	–111				
	(i) State the conditions of temperature and pressure for standard enthalpy changes.						
		Temperature					
		_					

(ii) Calculate the standard enthalpy change of formation for ${\rm CO_2}({\rm g})$.

$$\Delta_{\mathrm{f}}H^{\mathrm{e}}(\mathrm{CO}_{2}(\mathrm{g})) = \ldots k \mathrm{J} \, \mathrm{mol}^{-1}$$
 [3]

24	The a ke	reaction between sulfur dioxide, $SO_2(g)$ and oxygen, $O_2(g)$, to form sulfur trioxide, $SO_3(g)$, is by step in the industrial manufacture of sulfuric acid.
	This	s is a reversible reaction, shown in Equilibrium 24.1 :
	280	$O_2(g) + O_2(g) \implies 2SO_3(g)$ $\Delta H = -197 \text{ kJ mol}^{-1}$ Equilibrium 24.1
	(a)	Why is Equilibrium 24.1 a homogeneous equilibrium?
		[1]
	(b)	Le Chatelier's principle can be used to predict how different conditions affect the equilibrium position in Equilibrium 24.1 .
		Explain how changing pressure, temperature and using a catalyst affect the equilibrium yield of SO_3 .
		In your answer, use le Chatelier's principle and other chemical concepts, where appropriate.
		[5]

(c) A mixture of $SO_2(g)$ and $O_2(g)$ is allowed to reach equilibrium at a constant temperature.

The equilibrium concentrations are shown in the table.

Substance	Equilibrium concentration / mol dm ⁻³
SO ₂ (g)	3.0×10^{-3}
O ₂ (g)	3.5×10^{-3}
SO ₃ (g)	5.0 × 10 ⁻²

(i)	Write the expression for $K_{_{ m C}}$ and calculate the numerical value for $K_{_{ m C}}$ in Equilibriu l	m <mark>24.1</mark>
	at this constant temperature.	

Give your answer to an **appropriate** number of significant figures and in **standard form**.

$$K_{c} = \dots dm^{3} \text{ mol}^{-1}$$
 [2]

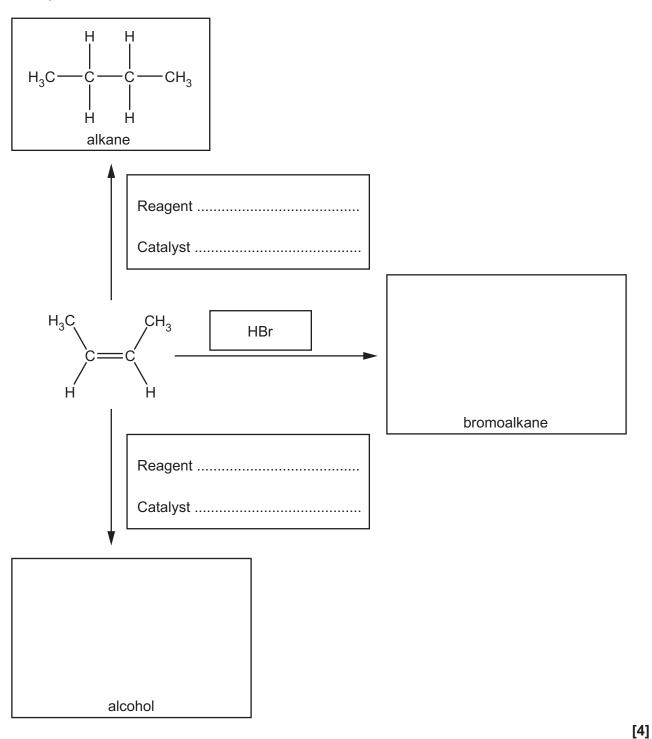
(ii) In the industrial production of SO_3 , an excess of $O_2(g)$ is used rather than a 2:1 proportion of $SO_2(g)$ to $O_2(g)$ which would match the stochiometry in **Equilibrium 24.1**.

Suggest, in terms of equilibrium, why an excess of $O_2(g)$ is used industrially.

- **25** This question is about hydrocarbons.
 - (a) The boiling points of 2 hydrocarbons are shown below.

Hydrocarbon	Boiling point/°C
butane	0
pentane	36

	Explain the difference in the boiling points of butane and pentane.
	[2]
/ b .\	
(b)	,
	The reaction needs UV radiation for the initiation stage.
	Write equations for the propagation stage that follows to form 2-bromobutane.
	Use skeletal formulae and 'dots' (•) to show the position of any radicals.


Propagation	\rightarrow	
Propagation	\rightarrow	

[2]

(c) Alkenes are used in organic synthesis.

Three reactions of an alkene are shown in the flowchart.

Complete the flowchart to show the missing reagents, catalysts and the structures of organic products.

26 This question is about the oxidation of two alcohols that are structural isomers of C₃H₈O.

Compare the oxidation of these two structural isomers using different reaction conditions.

For each reaction include:

- the reaction conditions
- the functional group of any organic product
- a balanced equation.

In your equations, use [O] to represent the oxidising agent and show any organic compounds as structures.
[5]

END OF QUESTION PAPER

23

ADDITIONAL ANSWER SPACE

nust be clearly shown in the margin(s).			

Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact The OCR Copyright Team, The Triangle Building, Shaftesbury Road, Cambridge CB2 8EA.

OCR is part of Cambridge University Press & Assessment, which is itself a department of the University of Cambridge.