

GCE

Physics A

H156/01: Breadth in physics

Advanced Subsidiary GCE

Mark Scheme for June 2019

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

© OCR 2019

Here are the subject specific instructions for this question paper.

CATEGORISATION OF MARKS

The marking schemes categorise marks on the MACB scheme.

B marks These are awarded as <u>independent</u> marks, which do not depend on other marks. For a **B**-mark to be scored, the point to which it refers must be seen specifically in the candidate's answer.

M marks

These are <u>method</u> marks upon which **A**-marks (accuracy marks) later depend. For an **M**-mark to be scored, the point to which it refers must be seen in the candidate's answer. If a candidate fails to score a particular **M**-mark, then none of the dependent **A**-marks can be scored.

These are <u>compensatory</u> method marks which can be scored even if the points to which they refer are not written down by the candidate, providing subsequent working gives evidence that they must have known it. For example, if an equation carries a **C**-mark and the candidate does not write down the actual equation but does correct working which shows the candidate knew the equation, then the **C**-mark is given.

A marks These are accuracy or <u>answer</u> marks, which either depend on an **M**-mark, or allow a **C**-mark to be scored.

SIGNIFICANT FIGURES

If the data given in a question is to 2 sf, then allow an answer to 2 or <u>more</u> significant figures. If an answer is given to fewer than 2 sf, then penalise once only in the <u>entire</u> paper. Any exception to this rule will be mentioned in the Guidance.

Annotations available in RM Assessor

	Annotation	Meaning				
	Correct response	Used to indicate the point at which a mark has been awarded (one tick per mark awarded).				
×	Incorrect response	Used to indicate an incorrect answer or a point where a mark is lost.				
AE	Arithmetic error	Do not allow the mark where the error occurs. Then follow through the working/calculation giving full subsequent ECF if there are no further errors.				
BOD	Benefit of doubt given	Used to indicate a mark awarded where the candidate provides an answer that is not totally satisfactory, but the examiner feels that sufficient work has been done.				
ВР	Blank page	Use BP on additional page(s) to show that there is no additional work provided by the candidates.				
CON	Contradiction	No mark can be awarded if the candidate contradicts himself or herself in the same response.				
ECF	Error carried forward	Used in <u>numerical answers only</u> , unless specified otherwise in the mark scheme. Answers to later sections of numerical questions may be awarded up to full credit provided they are consistent with earlier incorrect answers. Within a question, ECF can be given for AE, TE and POT errors but not for XP.				
L1	Level 1	L1 is used to show 2 marks awarded and L1 [^] is used to show 1 mark awarded.				
L2	Level 2	L2 is used to show 4 marks awarded and L2 [^] is used to show 3 marks awarded.				
L3	Level 3	L3 is used to show 6 marks awarded and L3 [^] is used to show 5 marks awarded.				
РОТ	Power of 10 error	This is usually linked to conversion of SI prefixes. Do not allow the mark where the error occurs. Then follow through the working/calculation giving ECF for subsequent marks if there are no further errors.				
SEEN	Seen	To indicate working/text has been seen by the examiner.				
SF	Error in number of significant figures	Where more SFs are given than is justified by the question, do not penalise. Fewer significant figures than necessary will be considered within the mark scheme. Penalised only once in the paper.				
TE	Transcription error	This error is when there is incorrect transcription of the correct data from the question, graphical read-off, formulae booklet or a previous answer. Do not allow the relevant mark and then follow through the working giving ECF for subsequent marks.				
XP	Wrong physics or equation	Used in <u>numerical answers only</u> , unless otherwise specified in the mark scheme. Use of an incorrect equation is wrong physics even if it happens to lead to the correct answer.				
٨	Omission	Used to indicate where more is needed for a mark to be awarded (what is written is not wrong but not enough).				

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
1	alternative and acceptable answers for the same marking point
Reject	Answers which are not worthy of credit
Not	Answers which are not worthy of credit
Ignore	Statements which are irrelevant
Allow	Answers that can be accepted
()	Words which are not essential to gain credit
	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

SECTION A

Question	Answer	Marks	Guidance
1	В	1	
2	A	1	
3	В	1	
4	A	1	
5	D	1	
6	C	1	
7	C	1	
8	C	1	
9	D	1	
10	В	1	
11	В	1	
12	A	1	
13	D	1	
14	D	1	
15	C	1	
16	A	1	
17	A	1	
18	В	1	
19	A	1	
20	C	1	
	Total	20	

SECTION B

General rule: For substitution into an equation, allow any subject - unless stated otherwise in the guidance

(Quest	ion	Answer	Marks	Guidance
21	(a)		Resultant / net / total moment = 0	B1	Allow sum of / Σ moments = 0 Allow 'total torque = 0' Allow clockwise moment = anticlockwise moment
	(b)	(i)	Earth	B1	Allow planet / ground
		(ii)	The forces are not of the same type / The forces act on the same object	B1	Allow The forces do not act on different objects
	(c)	(i)	87.4cos50° or 68.0sin10°	C1	Allow 87.4sin40° or 68.0cos80° Allow cosine and sine rules being used, e.g. $F^2 = 68.0^2 + 87.4^2 - 2 \times 68.0 \times 87.4 \times \cos 50^\circ$ or $F = 87.4 \times \sin 50^\circ/\sin 80^\circ$ or $F = 68.0 \times \sin 50^\circ/\sin 50^\circ$
			F = 68.0 (N)	A1	Allow 2 SF answer here
		(ii)	$68 = m \times 9.81$	C1	Possible ECF from (c)(i) Allow 68 = mg
			m = 6.9 (kg)	A1	Note answer to 3 SF is 6.93 (kg) Allow g = 9.8; this gives 6.94 (kg) Not g = 10; this gives 6.8 (kg). Only the first C1 mark can be scored
		(iii)	$E = \frac{\text{stress}}{\text{strain}} $ (Any subject)	C1	Allow $E = \frac{\sigma}{\varepsilon}$ or $E = \frac{FL}{Ax}$ (Any subject)
			(Tension and <i>E</i> increase by the same factor of 1.29)		
			ratio = 1.0	A1	Allow 1 SF answer Allow 1:1
			Total	9	

Q	uest	ion	Answer	Marks	Guidance
22	(a)				Ignore any statements about the motion before 0.2 s
			velocity = gradient or velocity = rate of change of displacement	B1	Note this must be clear statement - not implied
			Any three from: • speed / (magnitude of) velocity increases (until 0.50 s / hits grounds)	B1×3	Allow accelerates
			speed / (magnitude of) velocity decreases after 0.50 (s) / hitting ground		Allow decelerates
			 direction (of velocity / motion) changes at / after 0.50 (s) / hitting ground speed / (magnitude of) velocity after impact is smaller than the speed / (magnitude of) velocity before the impact 		Allow after hitting ground / 0.50 (s) the ball travels up / bounces (back / up) or change in direction (of velocity / motion) indicated by change in sign
	(b)		impact		Note there are no marks for gradient calculations here
			(s =) 1.23 (m) or $(t =) 0.50 (s)$	C1	Allow <i>s</i> between 1.22 (m) and 1.26 (m) Allow <i>t</i> between 0.495 (s) and 0.505 (s)
			$v^2 = 2 \times 9.81 \times 1.23$ or $1.23 = 0.50 \times \frac{v}{2}$ or $1.23 = v \times 0.50 - \frac{1}{2} \times 9.81 \times 0.50^2$ or $v = 9.81 \times 0.50$	C1	Substitution into $v^2 = u^2 + 2as$ with $u = 0$ Substitution into $s = \frac{(v+u)}{2} \times t$ with $u = 0$ Substitution into $s = vt - \frac{1}{2}at^2$ Substitution into $v = u + at$ with $u = 0$
			or $1.23 = \frac{1}{2} \times 9.81 \times t^2$; $t = 0.50$ (s) and $v = 9.81 \times 0.50$		Substitution into $s = ut + \frac{1}{2} at^2$ and $v = u + at$ with $u = 0$ Allow $g = 9.8$ Not $g = 10$, unless already penalised in 21(c)(ii)
			$v = 4.9 \text{ (m s}^{-1})$	Α0	

(c)	Correct tangent at $t = 0.50$ s with positive gradient	B1	
	Attempt at calculating the gradient of a tangent	M1	Note must evidence for Δs and Δt values either here or on Fig. 22 Allow this M1 mark for tangent not drawn at $t = 0.50$ s
	Gradient calculated in the range 3.20 to 3.80 (m s ⁻¹)	A1	Note this mark can only be scored if the tangent is drawn at $t = 0.50$ s and the calculated value falls in this range
(d)			Possible ECF from (c)
	$(\Delta v =) 4.9 + 3.5$ or $(\Delta v =) 8.4 \text{ (m s}^{-1})$	C1	Allow $(\Delta p =) (4.9 + 3.5) \times 0.056$ or $(\Delta p =) 0.47 (\text{kg m s}^{-1})$
	force = $\frac{8.4 \times 0.056}{1.8 \times 10^{-3}}$		
	force = 260 (N)	A1	Allow 1 mark for 44 (N); $\Delta v = 4.9 - 3.5$ used Ignore sign
	Total	11	

Q	Question		Answer		Guidance	
23	(a)	(i)	$(R_{\rm B} =) 9.5 \times 0.40$ or $3.8 (\Omega)$	C1		
			(parallel resistance =) $[3.8^{-1} + 1.8^{-1}]^{-1}$ or 1.22 (Ω)	C1	Possible ECF from R _B	
			(total resistance =) 1.22 + 0.62 or 1.84 (Ω)	C1	Possible ECF from parallel resistance	
			$I = \frac{1.4}{1.22+0.62}$			
			<i>I</i> = 0.76 (A)	A 1	Possible ECF from total resistance Allow 3 marks for 0.66 A; $R_{\rm B}$ = 9.5 Ω used	
		(ii)	$P = IV$ or $P = I^2R$ or $P = \frac{V^2}{R}$	C1		
			$(P_{\text{int}} =) 0.76^2 \times 0.62; (P_{\text{total}} =) 1.4 \times 0.76; \text{ ratio} = \frac{0.76^2 \times 0.62}{1.4 \times 0.76}$		Possible ECF from (a)(i) Note there are many other correct methods	
			ratio = 0.34	A 1	Allow 0.34:1 Not an answer expressed as a fraction, e.g 31/92	
	(b)				Note that each of the M1 mark can be implied in a calculation	
			Any <u>three</u> from: • Fig. 23.3 - p.d. split equally / (p.d. across each =) 3.0 (V) • Fig. 23.3 - current = 0.36 (A) (from the graph) • Fig. 23.4 - p.d. = 6.0 (V) (across each or combination) • Fig. 23.4 - current (= 2 × 0.50) = 1.0 (0) (A)	M1×3	Note 8.3 (Ω) will score the 3.0 V and the 0.36 A marks Note 12 (Ω) will score the 6.0 V mark	
			0.36×3 (= 1.08) is about 1.0 (A)	A 1	Note this mark is for showing that I_P is about 3 times I_S	
			Total	10		

Q	uestic	n	Answer	Marks	Guidance
24	(a)		Clear indication that angles of incidence and refraction are being measured relative to the normals	B1	Note this can be scored from a clear diagram. The angles must have sensible labels, e.g. i , r , θ_1 , θ_2 , etc Ignore angle of refraction > angle of incidence
			refractive index = sini/sinr	B1	Allow n for refractive index Allow $n_1 \sin \theta_1 = n_2 \sin \theta_2$, as long as all labels have been correctly identified <u>and</u> the refractive index for air/vacuum is taken as 1 Not $n = c/v$
			 Any one from: Measure angle(s) using a protractor Plot sin<i>i</i> against sin<i>r</i> graph or average sin<i>i</i> /sin<i>r</i> values Use narrow beam of light (for ray box) / draw thin pencil lines Conduct experiment in a dark room 	B1	
	(b)	(i)	Straight-line of best fit drawn	B1	
			gradient = 170 (Hz m)	B1	Allow value in range 160.0 to 180.0
		(ii)	$v = f\lambda$ or $\lambda = 2L$ or $v = 2fL$ (Any subject)	C1	Allow separation between adjacent nodes = $\frac{\lambda}{2}$
			Clear steps leading to gradient = $\frac{v}{2}$ using $y = mx$	A 1	Allow gradient = $f \div (\lambda/2)^{-1} = f\lambda/2 = v/2$
		(iii)	$v = 2 \times 170$		Possible ECF from (b)(i)
			$v = 340 \text{ (m s}^{-1})$	B1	

(iv)			Allow other sensible suggestions
	Decrease frequency / f (ORA) L / λ increases (so, smaller % uncertainty) (ORA)	M1 A1	Allow increase wavelength / λ (ORA) Allow L increases (so, smaller % uncertainty) (ORA)
	or		
	Measure distance between several nodes / antinodes Distance measured is larger (so, smaller % uncertainty)	M1 A1	
	or		
	Use a small(er) microphone Easier to locate position of node / antinode (so, smaller % uncertainty)	M1 A1	Allow reduce reflection of sound (other than from the wall)
	Total	10	

Q	uesti	on	Answer	Marks	Guidance
25	(a)		Diffraction (of electrons by matter)	B1	
	(b)	(i)	$(KE =) 210 \times 1.60 \times 10^{-19} (J)$ or $3.36 \times 10^{-17} (J)$	C1	Note using <i>KE</i> = 210 (J) is wrong physics XP
			$\frac{1}{2} \times 9.11 \times 10^{-31} \times v^2 = 3.36 \times 10^{-17}$	C1	
			$v = 8.6 \times 10^6 \text{ (m s}^{-1})$	A1	Note the answer must be to more than 1 SF
		(ii)	$\lambda = \frac{6.63 \times 10^{-34}}{9.11 \times 10^{-31} \times 8.6 \times 10^6}$	C1	Possible ECF from (i)
			$\lambda = 8.5 \times 10^{-11} \text{ (m)}$	A 1	Allow 2 marks for 8.1×10^{-11} (m); $v = 9 \times 10^{6}$ m s ⁻¹ used
	(c)		One photon interacts with one electron	B1	Ignore references to frequencies and threshold frequency Allow photoelectron instead of electron throughout
			energy of photon = (maximum) <i>KE</i> (of electron) + work function (of the metal)	B1	Note an equation is required Allow $hf = KE_{(max)} + \phi$, with * hf = energy of photon, $KE_{(max)}$ = (maximum) KE (of electron) and ϕ = work function * Not hf = Planck constant × frequency (since there is no reference to 'energy of photon') Allow energy of photon s =
			Work function is the <u>minimum energy</u> (required) to remove <u>electron</u> (from the surface of a metal)	B1	Allow ϕ instead of work function for this mark Allow 'work done' instead of 'energy' Allow electron s as BOD
			Electron removed / photoelectric effect when energy of photon is greater than / equal to work function (of the metal)	B1	Allow electron removed / photoelectric effect when $hf > \phi$ or electron removed / photoelectric effect when $hf = \phi$ or electron not removed / no photoelectric effect when $hf < \phi$ Allow electron s and photon s as BOD
			Total	10	

OCR (Oxford Cambridge and RSA Examinations) The Triangle Building **Shaftesbury Road** Cambridge **CB2 8EA**

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627

Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA Registered Company Number: 3484466 **OCR** is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office

Telephone: 01223 552552 Facsimile: 01223 552553

© OCR 2019

